
DEPARTMENT OF COMPUTER SCIENCE

GLIMPSE: A Tool to Search

Through Entire File Systems

Udi Manber and Sun Wu

TR 93-34

October 1993



To appear in the

1994 Winter USENIX Technical Conference

GLIMPSE: A Tool to Search Through Entire File Systems

Udi Manber1

Department of Computer Science

University of Arizona

Tucson, AZ 85721

udi@cs.arizona.edu

Sun Wu

Department of Computer Science

National Chung-Cheng University

Ming-Shong, Chia-Yi, Taiwan

sw@cs.ccu.edu.tw

ABSTRACT

GLIMPSE, which stands for GLobal IMPlicit SEarch, provides indexing and query schemes for file systems. The

novelty of glimpse is that it uses a very small index — in most cases 2-4% of the size of the text — and still

allows very flexible full-text retrieval including Boolean queries, approximate matching (i.e., allowing misspel-

ling), and even searching for regular expressions. In a sense, glimpse extends agrep to entire file systems, while

preserving most of its functionality and simplicity. Query times are typically slower than with inverted indexes,

but they are still fast enough for many applications. For example, it took 5 seconds of CPU time to find all 19

occurrences of Usenix AND Winter in a file system containing 69MB of text spanning 4300 files. Glimpse is

particularly designed for personal information, such as one’s own file system. The main characteristic of per-

sonal information is that it is non-uniform and includes many types of documents. An information retrieval sys-

tem for personal information should support many types of queries, flexible interaction, low overhead, and cus-

tomization, All these are important features of glimpse.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

1 Supported in part by an NSF Presidential Young Investigator Award (grant DCR-8451397), with matching funds from AT&T, by NSF

grants CCR-9002351 and CCR-9301129, and by the Advanced Research Projects Agency under contract number DABT63-93-C-0052. Part

of this work was done while the author was visiting the University of Washington.

The information contained in this paper does not necessarily reflect the position or the policy of the U.S. Government or other sponsors of this

research. No official endorsement should be inferred.



2

1. Introduction
With the explosion of available information, especially through networks, organizing even one’s own personal

file system is becoming difficult. It is hard, even with a good organization, to remember things from a few years

back. (Now where did I put the notes on that interesting colloquium two years ago?) After a while, not only the

content of a piece of information can be forgotten, but also the existence of that information. There are two types

of tools to search for patterns: grep-like tools, which are fast only if the search is limited to a small area, and

index-based tools, which typically require a large index that needs to be computed ahead of time. Glimpse is a

combination of the two approaches. It is index-based, but it uses a very small index; it assumes no structure from

the data; and it allows very flexible queries including approximate matching.

The most common data structure used in information retrieval (IR) systems is an inverted index [SM83].

All occurrences of each word are stored in a table indexed by that word using a hash table or a tree structure. To

reduce the size of the table, common words (e.g., the or that in English) are sometimes not indexed (although this

cannot be done when the text is multi-lingual). Inverted indexes allow very fast queries: There is no need to

search in any of the texts, only the table needs to be consulted and the places where the word occurs are retrieved

immediately. Boolean queries are slower, but are still relatively fast.

The main drawback of inverted indexes for personal file systems is their space requirement. The size of the

index is typically 50%-300% of the size of the text [Fa85]. This may not be a major drawback for commercial

text databases, because disk space is relatively cheap, but it is a major drawback for personal information. Most

users would not agree to double their disk cost for the benefit of indexing. Indeed today most personal file sys-

tems are not indexed. But, due to an increased availability of digital information through networks, many per-

sonal file systems are large enough to require IR capabilities. Signatures files [Fa85, GB91] have been suggested

as an alternative to inverted indexes with good results. Their indexes are only 10%-30% of the text size. Their

search time is slower than with inverted indexes, and since they are based on hashing, their parameters must be

chosen carefully (especially for many files of different sizes) to minimize the false drops probability.

The second weakness of inverted indexes is the need for exact spelling (due to the use of hashing or tree

structures to search for keywords in the index efficiently). If one is looking for all articles containing

Schwarzkopf for example, any article with a misspelling will be missed (not to mention that the exact spelling is

needed to form the query). The typical way to find misspelled words is to try different possibilities by hand,

which is frustrating, time consuming, and is not guaranteed to succeed. In some cases, especially in large infor-

mation bases, searching provides the only way to access information. A misspelling can cause a piece of infor-

mation to be virtually lost. This is the digital equivalence of dropping a folder behind the file cabinet (except that

there is no limit to the room behind this ‘file cabinet,’ and hardly anyone ever cleans there). This problem is

expected to become more acute as more information is scanned by OCR (Optical Character Recognition) devices,

which currently have an error rate of 1-5% [BN91, RKN92].

Glimpse requires a very small index, in most cases 2-4% of the original text, and it supports arbitrary

approximate matching. As we will describe in detail in the next section, glimpse’s engine is agrep, a search pro-

gram that we developed [WM92a, WM92b], which allows the user to specify the number of allowable errors

(insertions, deletions, substitutions, or any combination). The user can also search for the best match, which will

automatically find all matches with the minimum number of errors. Because we use a small index, our algo-

rithms are usually slower than ones using inverted indexes, but their speed is still on the order of a few seconds,

which is fast enough for single users.



3

In some sense, glimpse takes the opposite extreme to inverted files in the time vs. space tradeoff (with sig-

nature files being in the middle). For some applications, such as management of personal information, speed is a

secondary issue. Most users would rather wait for 10-15 seconds, or even longer, for a query than double their

disk space. Even for IR systems, such as library card catalogs, where high throughput is essential, our scheme

can be used as a secondary mechanism to catch spelling errors. For example, we found several spelling errors in

a library catalog (see Section 4). We believe that this capability is essential in all applications that require a high

level of reliability; for example, medical labs could miss information on patients due to misspelling.

We call our method two-level searching. The idea is a hybrid between full inverted indexes and sequential

search with no indexing. It is based on the observation that with current computing performance, sequential

search is fast enough for text of size up to several megabytes. Therefore, there is no need to index every word

with an exact location. In the two-level scheme the index does not provide exact locations, but only pointers to

an area where the answer may be found. Then, a flexible sequential search is used to find the exact answer and

present it to the user. (Some other IR systems, such as MEDLARS [SM83] and STATUS [Te82], allow sequen-

tial search as a postprocessing step to further filter the output of a query, but the search relies on inverted

indexes.) The idea of two-level searching is quite natural, and, although we have not found references to it, it has

most probably been used before. The use of agrep for both levels — searching the index and then searching the

actual files — provides great flexibility, in particular it allows approximate matching and regular expressions, as

we will discuss later.

We have been using glimpse for several months and we are finding it indispensable. It is so convenient that

we use it many times even when we know where the information is and can use agrep directly: It is just easier to

quickly browse through the output than to cd to the right directory, ls to find the exact name of the file,

agrep it, and cd back. We found ideas that we wrote many years ago, and not only forgot where we put them,

but forgot about writing them in the first place. We found that we sometimes save information that we probably

would have discarded without glimpse, because we now have some confidence of ever finding it again. An

interesting example, conveyed to us by someone who tested a beta version of glimpse, was to find an e-mail

address of a friend who moved recently; glimpse found it not in any mail messages, but in a call for papers!

Glimpse can sometimes truly find a needle in a haystack.

2. The Two-Level Query Approach
In this section, we describe our scheme for two-level indexing and searching. We start with the way the index is

built.

The information space is assumed to be a collection of unstructured text files. A text consists of a sequence

of words, separated by the usual delimiters (e.g., space, end-of-line, period, comma). The first part of the index-

ing process is to divide the whole collection into smaller pieces, which we call blocks. We try to divide evenly so

that all blocks have approximately the same size, but this is not essential. The only constraint we impose is that

the number of blocks does not exceed 28 =256, because that allows us to address a block with 8 bits (one byte).

This is not essential, but it appears to be a good design decision.

We scan the whole collection, word by word, and build an index that is similar in nature to a regular

inverted index with one notable exception. In a regular inverted index, every occurrence of every word is

indexed with a pointer to the exact location of the occurrence. In our scheme every word is indexed, but not

every occurrence. Each entry in the index contains a word and the block numbers in which that word occurs.



4

Even if a word appears many times in one block, only the block number appears in the index and only once.

Since each block can be identified with one byte, and many occurrences of the same word are combined in the

index into one entry, the index is typically quite small. Full inverted indexes must allocate at least one word (4

bytes), and usually slightly more, for each occurrence of each word. Therefore, the size of an inverted index is

comparable to the size of the text. But our index contains only the list of all unique words followed by the list of

blocks — one byte for each — containing each word. For natural language texts, the total number of unique

words is usually not too large, regardless of the size of the text.

The search routine consists of two phases. First we search the index for a list of all blocks that may contain

a match to the query. Then, we search each such block separately. Even though the first phase can be done by

hashing or B-trees, we prefer sequential search using agrep, because of its flexibility. With hashing or B-trees,

only keywords that were selected to be included in the data structure can be used. With sequential search we can

get the full power of agrep. Since the index is quite small, we can afford sequential search.2

Agrep is similar in use to other grep’s, but it is much more general. It can search for patterns allowing a

specified number of errors which can be insertions, deletions, or substitutions (or any combination); it can output

user-defined records (e.g., paragraphs or mail messages), rather than just lines; it supports Boolean queries, wild

cards, regular expressions, and many other options. Given a pattern, we first use agrep to find all the words in the

index that match it. Then, using agrep again, we search the corresponding blocks to find the particular matches.

The same procedure holds for all types of complicated patterns such as ones that contain wildcards (e.g., U..nix),

a set of characters (e.g. count[A-E]to[W-Z], where [A-E] stands for A, B, C, D, or E), or even a negation (e.g.,

U[ˆl]..ix, where [ˆl] stands for any character except for l). These kinds of patterns cannot be supported by the

regular hashing scheme that looks up a keyword in the table, because such patterns can correspond to hundreds or

even thousands of possible keywords.

Boolean queries are performed in a similar way to the regular inverted lists algorithm. Suppose that the

query is for pattern1 AND pattern2. We find the list of all blocks containing each pattern and intersect them.

Then we search the blocks in the intersection. Notice that even if we find some blocks that contain pattern1 and

pattern2, it does not mean that the query is successful, because pattern1 may be in one part of the block and pat-

tern2 in another. Glimpse is not efficient for Boolean queries that contain very common words. The worst exam-

ple of this weakness that we encountered was a search for ‘‘linear programming.’’ This term appeared in our

files in several blocks, but to find it we had to intersect all blocks that contain the word ‘linear’ with all blocks

that contain the word ‘programming’ which in both cases were almost all blocks.

The idea of using agrep to search the index can also be integrated with regular inverted indexes. It is pos-

sible to separate the list of words in an inverted index from the rest of the index, then use agrep to find the words

that match the query (e.g., a query that allows some errors), then use the regular inverted index algorithm to find

those words. We are not familiar with any system that provides approximate matching in this fashion.

In summary, we list the strengths and weaknesses of our two-level scheme compared with regular inverted

indexes:

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

2 Although the index is not an ASCII file, because the block numbers use all 256 byte values, the words themselves are stored in ASCII so

agrep can find them.



5

Strengths

1. Very small index.

2. Approximate matching is supported.

3. Fast index construction.

4. No need to define document boundaries ahead of time. It can be done at query time.

5. Easy to customize to user preferences.

6. Easy to adapt to a parallel computer (different blocks can be searched by different processors).

7. Easy to modify the index due to its small size. Therefore, dynamic texts can be supported.

8. No need to extract stems. Subword queries are supported automatically (even subwords that appear in the

middle of words).

9. Queries with wildcards, classes of characters, and even regular expressions are supported.

Weaknesses

1. Slower compared to inverted indexes for some queries. Not suitable for applications where speed is the

predominant concern.

2. Too slow, at this stage (but we’re working on it), for very large texts (more than 500MB).

3. Boolean queries containing common words are slow.

3. Usage and Experience
We have been using glimpse for a few months now, mostly on our own file systems. We have tried it on several

other data collections, ranging in size from 30MB to 250MB. In this section, we discuss some of the current

features of glimpse and our experience with it.

The current version of glimpse is a collection of many programs of about 7500 lines of C code. It is geared

towards indexing a part of a file system. The statement

glimpse_index [-n] dir_name [dir_names]

indexes directory dir_name (or several directories) and everything below it. The most common usage is

glimpse_index ˜. The -n option indexes numbers as well. Indexing is typically done every night, and it

takes about 6 minutes (elapsed time) to index 50MB of text or about 7-8 seconds per 1MB (using a DEC

5000/240 workstation).

Before indexing a file, the program checks whether it is a text file. If the file is found to have too many

non-alphanumeric characters (e.g., an executable or a compressed file), it is not indexed, and its name is added to

a .log file. Other formats, for example, ‘uuencoded’ files and ‘binhexed’ files, are excluded too. Determining

whether a file is a text file is not easy. Texts of languages that use special symbols, such as an umlaut, may look

like binary files. There are tools that do a good job of identifying file types, for example Essence [HS93], and we

will eventually incorporate them in glimpse. On the other hand, some ASCII files should not be indexed. A good

example is a file containing DNA sequences. We actually have such files and found them to cause the index to

grow significantly, because they contain a large number of essentially random strings. We should note that the

two-level scheme is not suitable for typical biological searches, because they require more complicated types of



6

approximate matching. Indexing numbers is useful for dates and other identifying numbers (e.g., find all e-mail

messages from a certain person during July 1991). But large files with numeric data will make the index

unnecessarily large. Glimpse allows the user to specify which files should not be indexed by adding their names

to a .prohibit file. We plan to add more customized features to the indexing process.

The partition into blocks is currently done in a straightforward way. The total size of all text files is com-

puted, and an estimate on the desired size of a block is derived. Files are then combined until they reach that

size, and a new block is started. We plan to improve this scheme in the future in two ways: 1) the partition

should be better adapted to the original organization of the data, and 2) the user should have the ability to control

how the partition is done.

The user interface for glimpse is similar to that of agrep, except that file names are not required. The typi-

cal usage is

glimpse information

which will output all lines in all indexed files that contain information;

glimpse -1 HardToSpell

will find all occurrences of HardToSpell with one spelling error.

glimpse -w ’t[a-z]j@#uk’

will find all email addresses in which a 3-letter login name starts with t and ends with j (it is typical not to know

the user’s middle name) and uk is somewhere in the host name (in agrep the symbol # stands for arbitrary

number of wild cards, and the -w option specifies that the pattern must match a complete word).

Glimpse supports Boolean queries the same way that agrep does (with ; serving as AND):

glimpse -1 ’Lazoska;Zahorian’

will find all occurrences of both names (allowing one spelling error, which is needed).

glimpse ’Winter Usenix’

will first search the index for the two words separately and find all the blocks containing both words, then use

agrep for the whole phrase.

Another nice feature of glimpse is to limit the search to files whose names match a given regular expres-

sion.

glimpse -F ’haystack\.c$’ needle

will find all needles in all haystack.c files. Sometimes, you want to search everywhere for that elusive definition:

glimpse -F ’\.h$’ ABC_XYZ

will search all .h files.

glimpse -F ’\.tex$’ ’environment;ˆ\\’

will find all occurrences of environment in a line that starts with \ (useful if you want to see environment as part

of a definition). Glimpse is in fact so flexible that it can be used for some file management operations; for exam-

ple,

glimpse -F mbox -h -G . > MBOX



7

will concatenate all files whose name is mbox into one big one;

glimpse -c -F ’pattern\.h$’ ’\#define’

will provide a list of all pattern.h files, each followed by the number of #define’s it has. We even allow errors in

the regular expressions for the file names, using, for example, -F1 for one error.

4. Performance
All the performance numbers given below are anecdotal. The point of this section is not to compare the running

time of glimpse to other systems, but to argue that it is fast enough for its purposes. Query times depend heavily

on the type of indexed data and the query itself (not to mention the architecture and the operating system). If the

pattern appears in only one block, the search time will be almost always fast no matter how large the data is or

how complex the pattern may be (an unsuccessful query is the fastest because only the index needs to be

searched). If the pattern matches a large portion of the blocks, the query may be slow. Searching in a large

information space requires a careful design of queries. No matter how fast the search is, if the number of

matches is large, it will take too long to sift through them. However, we found that even matching to common

patterns can be useful, because one starts to see many matchings quite fast, and one can then stop and adjust the

pattern. In some cases, even though there were many matches, the first few ones were sufficient to get the answer

we were looking for. (We also added an option -N that tells the user the number of blocks that would need to be

searched.)

Below we list some running times (on a DEC 5000/240 workstation) for a personal file system containing

69MB of text in 4296 different files. It took 4.9 minutes of CPU time (9 minutes of elapsed time) to index it

(including the time to determine that 857 other files were not text files) and the index size was 1.9MB, which is

2.7% of the total. 205 blocks were used. A typical search takes from 2-10 seconds. For example, a search for

biometrics took 1.6 seconds. (The numbers listed here are the sum of the user and system times.) A search for

incredible took 2.8 seconds (there were 27 matches in 22 files). A search for Checoslovakia allowing two errors

took 3.6 seconds. A search for Usenix took 13.9 seconds because there were 93 matches divided among 70 dif-

ferent blocks. A Boolean search can sometimes help by limiting the number of scanned blocks (which are only

those that match all patterns), but again it depends on the number of matches. For example, searching for Usenix

AND Winter took only 4.5 seconds since there were only 19 matches. A search for Lazowska AND Zahorjan

with one error took 4.7 seconds. A search for protein AND matching took 7.7 seconds because both patterns

were very common. The search for the e-mail address mentioned above (t[a-z]j@#uk) took 30 seconds (although

we believe that some of it is due to a bug that for some complicated regular expressions causes search in some

unnecessary blocks), but this is still much better than any alternative.

For a much larger information space, we indexed an old copy of the entire library catalog of the Univeristy

of Arizona. This experiment and the next one were run on a SUN SparcStation 10 model 512 running Solaris.

The copy we used lists approximately 2.5 million volumes, divided among 440 files occupying 258MB. The

index size was 8MB, which is 3.1%. The index would have been much smaller for regular text; the catalog con-

tains mostly names and terms, in several languages, and since it uses fixed records, quite a few of the words are

truncated. It took 18 minutes (all times here are elapsed times) to index the whole catalog. A search for Manber

took 1 second (one match). A case insensitive (-i) search for usenix yielded one match in 1.8 seconds. A search

for UNIX took 3.9 seconds (138 matches in 8 blocks). A search for information AND retrieval took 14.9

seconds; there were 38 matches in 9 blocks, but 31 blocks had to be searched (because they included both terms).



8

Searching for ‘algorithm’ allowing two errors took 16.3 seconds, finding 269 matches, 21 of which did not match

the pattern exactly due to a misspelling (alogorithm, Alogrithms) or a foreign spelling (e.g., algoritmy).

An example that highlighted the ‘‘best case’’ for glimpse was a directory containing the archives from

comp.dcom.telecom. They occupy about 71MB divided among 120 files. The small number of files minimizes

the overhead of opening and closing files making agrep, and as a result glimpse very fast. Even without glimpse,

searching for Schwarzkopf allowing two misspelling errors took agrep only 8.5 seconds elapsed time. It took

glimpse 3:38 minutes to index the directory and the index size was 1.4MB (about 2% of the total). With glimpse,

the Schwarzkopf search took 0.4 seconds (all matches were in one file). A search for Usenix (no error allowed),

which appeared in 5 blocks, took 0.9 seconds. A search for glimpse took 3.7 seconds (15 matches in 9 blocks).

5. Future Work
We list here briefly some avenues that we are currently exploring.

5.1. Searching Compressed Text

If the text is kept in a compressed form, it will have to be decompressed before the sequential search can be per-

formed. This will generally slow down the search considerably. But we are developing new text compression

algorithms that actually speed up the search while allowing compression at the same time. The first algorithm

[Ma93] allows agrep (and most other sequential search algorithms) to search the compressed file directly without

having to decompress it first. Essentially, instead of restoring the text back to its uncompressed form, we modify

the pattern to fit the compressed form and search for the modified pattern directly. Searching the compressed file

directly improves the search time (as well as space utilization, of course), because there is less I/O. In prelim-

inary tests, we achieved about 30% reduction in space and 25% decrease in search time. This allows files to be

kept in a compressed form indefinitely (unless they are changed) and to be searched at the same time. In particu-

lar, we intend to compress the index used in the two-level scheme, because it is searched frequently. We are

working on another compression scheme that will be integrated into glimpse. This work is still in a very prelim-

inary stage. The compression rates, for natural language texts, seem to be in the 50% range. It also allows fast

search without decompression, although it is too early to predict its speed.

5.2. Incremental Indexes

The two-level index is easier to modify and adapt to a dynamic environment than a regular inverted index,

because it is so much smaller. To add a new file to the current index, we first add the file to an existing block or

create a new block if the file is large enough or important enough to deserve it. Then we scan the index and add

each word in the new file that does not already appear in the block. Since the index is small, reading it from disk

and writing it back can be done very fast. Deletion of a file is slightly more time consuming because for each

word we need to check the whole block to determine whether that word appears somewhere else (and thus should

not be deleted). Fortunately, agrep contains a very powerful algorithm for multi-pattern matching. It can search

for a large collection of words (up to 30,000) concurrently.

Incremental indexing will be essential for indexing newsfeed. We are considering adapting glimpse to

allow searching usenet netnews. Currently, the total size of a typical usenet server is from 500-800MB. Quite a

bit of it is not text but images and programs, so it is a size we can handle. The problem is that this kind of

newsfeed consists of a large number of small files (individual email messages) stored at random places on the



9

disk. A better data organization will probably be required for reasonable performance.

5.3. Customization

There are several ways to let the user improve the indexing and searching procedures by customizing. The user

should be able to decide whether certain patterns are indexed or not. We provide an option to index numbers, but

we should allow more flexibility. One way is to provide a hook to an external filtering program, provided by the

user, which will decide what to index based on contents, type of file, name of file, etc. We also plan to allow the

user to store a large set of multi-words phrases (e.g., "fiber optics," "Jonathan Smith, "May 1992") that will be

indexed together, allowing quick search for them without the need for Boolean queries. Another option is to par-

tition the collection of files into categories and build separate indexes for each (e.g., correspondence, information

from servers, program source codes). This is not needed for small to medium size file system, but may be essen-

tial for large file systems. We also plan to support access to any special structure or additional information asso-

ciated with the text. For example, some searches may specify that the desired information starts at column 30 on

the line or in the second field. The user may want to search only small files (say, below 20KB) or recent files

(say, after August 1992).

There should be more ways to view the output. For example, for queries that give many matches, the user

may be interested first in a rough idea of where those matches are (e.g., only directory names). We currently

have an option [-c] to list only the files containing a match along with the number of matches, and another option

[-N] to output only the number of blocks with potential matches. These options, and many more, can be incor-

porated in glimpse rather easily. We believe that customization is the key to better search facilities.

Acknowledgements
Burra Gopal found and corrected several bugs in the code. We thank Greg Andrews, George Forman, and Trevor

Jenkins for comments that improved the manuscript.

References
[BN91]

Bradford R., and T. Nartker, ‘‘Error correlation in contemporary OCR systems,’’ Proc. of the First Int.

Conf. on Document Analysis and Recognition, (1991), pp. 516−523.

[Fa85]

Faloutsos C., ‘‘Access methods for text,’’ ACM Computing Surveys, 17 (March 1985), pp. 49−74.

[GB91]

Gonnet, G. H. and R. A. Baeza-Yates, Handbook of Algorithms and Data Structures (Chap. 7.2.6) Second

Edition, Addison-Wesley, Reading, MA, 1991.

[HS93]

Hardy D. R., and M. F. Schwartz, ‘‘Essence: A resource discovery system based on semantic file index-

ing,’’ Proc. of the USENIX Winter Conference, San Diego (January 1993), pp. 361−374.

[Ma93]

Manber U., ‘‘A text compression scheme that allows fast searching directly in the compressed file,’’ techn-

ical report 93-07, Department of Computer Science, University of Arizona (March 1993).



10

[RKN92]

Rice, S. V., J. Kanai, and T. A. Nartker, ‘‘A report on the accuracy of OCR devices,’’ Technical Report,

Information Science Research Institute, University of Nevada, Las Vegas, 1992.

[SM83]

Salton G., and M. J. McGill, Introduction to Modern Information Retrieval, McGraw-Hill, New York,

1983.

[Te82]

Teskey, F. N., Principle of Text Processing, Ellis Horwood Pub., 1982.

[WM92a]

Wu S. and U. Manber, ‘‘Agrep — A Fast Approximate Pattern-Matching Tool,’’ Usenix Winter 1992

Technical Conference, San Francisco (January 1992), pp. 153−162.

[WM92b]

Wu S., and U. Manber, ‘‘Fast Text Searching Allowing Errors,’’ Communications of the ACM 35 (October

1992), pp. 83−91.


