
AGREP — A FAST APPROXIMATE PATTERN-MATCHING TOOL

(Preliminary version)

Sun Wu and Udi Manber1

Department of Computer Science

University of Arizona

Tucson, AZ 85721

(sw | udi)@cs.arizona.edu

ABSTRACT

Searching for a pattern in a text file is a very common operation in many applications ranging from text editors
and databases to applications in molecular biology. In many instances the pattern does not appear in the text
exactly. Errors in the text or in the query can result from misspelling or from experimental errors (e.g., when the
text is a DNA sequence). The use of such approximate pattern matching has been limited until now to specific
applications. Most text editors and searching programs do not support searching with errors because of the com-
plexity involved in implementing it. In this paper we describe a new tool, called agrep, for approximate pattern
matching. Agrep is based on a new efficient and flexible algorithm for approximate string matching. Agrep is
also competitive with other tools for exact string matching; it include many options that make searching more
powerful and convenient.

1. Introduction

The most common string-searching problem is to find all occurrences of a string P =p 1p 2...pm inside a large text
file T = t 1t 2

. . . tn. We assume that the string and the text are sequences of characters from a finite character set Σ.
The characters may be English characters in a text file, DNA base pairs, lines of source code, angles between
edges in polygons, machines or machine parts in a production schedule, music notes and tempo in a musical score,
etc. The two most famous algorithms for this problem are the Knuth-Morris-Pratt algorithm [KMP77] and the
Boyer-Moore algorithm [BM77] (see also [Ba89] and [HS91]). There are many extensions to this problem; for
example, we may be looking for a set of patterns, a regular expression, a pattern with ‘‘wild cards,’’ etc. String
searching in Unix is most often done with the grep family.

In some instances, however, the pattern and/or the text are not exact. We may not remember the exact spel-
ling of a name we are searching, the name may be misspelled in the text, the text may correspond to a sequence of
numbers with a certain property and we do not have an exact pattern, the text may be a sequence of DNA
molecules and we are looking for approximate patterns, etc. The approximate string-matching problem is to find
all substrings in T that are close to P under some measure of closeness. We will concentrate here on the edit-
distance measure (also known as the Levenshtein measure). A string P is said to be of distance k to a string Q if
we can transform P to be equal to Q with a sequence of k insertions of single characters in (arbitrary places in) P,
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

1 Supported in part by an NSF Presidential Young Investigator Award (grant DCR-8451397), with matching funds from AT&T, and by an NSF

grant CCR-9002351.

deletions of single characters in P, or substitutions of characters. Sometimes one wants to vary the cost of the dif-
ferent edit operations, say deletions cost 3, insertions 2, and substitutions 1.

Many different approximate string-matching algorithms have been suggested (too many to list here), but
none is widely used, mainly because of their complexity and/or lack of generality. We present here a new tool,
called agrep (for approximate grep), which has a very similar user interface to the grep family (although it is not
100% compatible), and which supports several important extensions to grep. Version 1.0 of agrep is available by
anonymous ftp from cs.arizona.edu (IP 192.12.69.5) as agrep/agrep.tar.Z. It has been developed on a SUN
SparcStation and has been successfully ported to DECstation 5000, NeXT, Sequent, HP 9000, and Silicon Graph-
ics workstations. We expect version 2.0 to be available (at the same place) by the end of 1991; most of the discus-
sion here refers to version 2. The three most significant features of agrep that are not supported by the grep family
are 1) searching for approximate patterns, 2) searching for records rather than just lines, and 3) searching for mul-
tiple patterns with AND (or OR) logic queries. (All 3 features are available in version 1.0.) Other features
include searching for regular expressions (with or without errors), efficient multi-pattern search, unlimited wild
cards, limiting the errors to only insertions or only substitutions or any combination, allowing each deletion, for
example, to be counted as, say, 2 substitutions or 3 insertions, restricting parts of the query to be exact and parts to
be approximate, and many more. Examples of the use of agrep are given in the next section.

Agrep not only supports a large number of options, but it is also very efficient. In our experiments, agrep
was competitive with the best exact string-matching tools that we could find (Hume’s gre [Hu91] and GNU e?grep
[Ha89]), and in many cases one to two orders of magnitude faster than other approximate string-matching algo-
rithms. For example, finding all occurrences of Homogenos allowing two errors in a 1MB bibliographic text takes
about 0.2 seconds on a SUN SparcStation II. (We actually used this example and found a misspelling in the bib
file.) This is almost as fast as exact string matching.

This paper is organized as follows. We start by giving examples of the use of agrep that illustrate how flexi-
ble and general it is. We then briefly describe the main ideas behind the algorithms and their extensions. (More
details are given in the technical report and man pages which are available by ftp.) We then give some experi-
mental results, and we close with conclusions.

2. Using Agrep

We have been using agrep for about 6 months now and find it an indispensable tool. We present here only a sam-
ple of the uses that we found. As we said in the introduction, the three most significant features of agrep that are
not supported by the grep family are

1. the ability to search for approximate patterns
for example, agrep -2 Homogenos bib will find Homogeneous as well as any other word that can
be obtained from Homogenos with at most 2 substitutions, insertions, or deletions. It is possible to assign
different costs to insertions, deletions, or substitutions. For example, agrep -1 -I2 -D2 555-3217

phone will find all numbers that differ from 555-3217 in at most one digit. The -I (-D) option sets the cost
of insertions (deletions); in this case, setting it to 2 prevents insertions and deletions.

2. agrep is record oriented rather than just line oriented
a record is by default a line, but it can be user defined; for example, agrep -d ’ˆFrom ’ ’pizza’

mbox outputs all mail messages that contain the keyword "pizza". Another example: agrep -d ’$$’

pattern foo will output all paragraphs (separated by an empty line) that contain pattern.

3. multiple patterns with AND (or OR) logic queries
For example, agrep -d ’ˆFrom ’ ’burger,pizza’ mbox outputs all mail messages containing
at least one of the two keywords (‘,’ stands for OR); agrep -d ’ˆFrom ’ ’good;pizza’ mbox

outputs all mail messages containing both keywords (‘;’ stands for AND).

Putting these options together one can ask queries like
agrep -d ’$$’ -1 ’<CACM>;TheAuthor;Curriculum;<198[5-9]>’ bib-file

which outputs all paragraphs referencing articles in CACM between 1985 and 1989 by TheAuthor dealing with
curriculum. One error is allowed in any of the sub-patterns, but it cannot be in either CACM or the year (the <>
brackets forbid errors in the pattern between them).

These features and several more enable users to compose complex queries rather easily. We give several
examples of the daily use of agrep from our experience. For a complete list of options, see the manual pages dis-
tributed with agrep.

2.1. Finding words in a dictionary

The most common tool available in UNIX for finding the correct spelling of a word is the program look, which
outputs all words in the dictionary with a given prefix. We have many times looked for spelling of words for
which we did not know a prefix. We use the following alias for findword:

alias findword agrep -i -!:2 !:1 /usr/dict/web2

(web2 is a large collection of words, about 2.5MB long; one can use /usr/dict/words instead.) For example, one
of the authors can never remember the correct spelling of bureaucracy (and he is irritated enough with it not want-
ing to remember). findword breacracy 2 searches for all occurrences of breacracy with at most two
errors. (web2 contains one more match - squireocracy).

One can also use the -w option which matches the pattern to a complete word (rather than possibly a sub-
word). In the example above, the extra match (squireocracy) will not be a match, because with the -w option its
beginning (squi) will count as 4 extra errors.

2.2. Searching a Mail File

We found that one of the most frequent uses of agrep is to search inside mail files for mail messages using the
record option. We use the following alias

alias agmail agrep -!:2 -d ’ˆFrom ’ !:1

Notice that it is possible with this alias to use complicated queries; for example,
agmail ’<pizza>;<great>;Manbar’ 1 mail/food, or
agmail ’\.gov;October;surprise’ 0 mail/*, which searches all mail messages from .gov (a .
without the \ matches every character) that include the two keywords.

2.3. Extracting Procedures

It is usually possible to easily extract a procedure from a large program by defining a procedure as a record and
using agrep. For example, agrep -t -d ’ˆ}’ ’ˆroutine1’ prog1/*.c > routine1.c will work
assuming routines in C always end with } at the beginning of a line (and that ’ˆroutine1’ uniquely identifies that
routine). One should be careful when dealing with other people’s programs (because the conventions may not be
followed). Other programming languages have other ways to identify the end (or beginning of a procedure). The
-t option puts the record delimiter at the end of the record rather than at the beginning (which is more appropriate
for mail messages, for example).

2.4. Finding Interesting Words

At some point we needed to find all words in the dictionary with 4-7 characters. This can be done with one agrep
command agrep -3 -w -D4 ’....’ /usr/dict/words. (The -D4 prevents deletions, and the . in
the pattern stands for any character.)

We end this section with a cute example, which although is not important, shows how flexible agrep can be.
The following query finds all words in the dictionary that contain 5 of the first 10 letters of the alphabet in order:
agrep -5 ’a#b#c#d#e#f#g#h#i#j’ /usr/dict/words (the # symbol stands for a wild card of any
size - the same as .*). Try it. The answer starts with the word academia and ends with sacrilegious; it must mean
something..

3. The Algorithms

Agrep utilizes several different algorithms to optimize the performance for the different cases. For simple exact
queries we use a variant of the Boyer-Moore algorithm. For simple patterns with errors, we use a partition
scheme, described at the end of section 3.2, hand in hand with the Boyer-Moore scheme. For more complicated
patterns, e.g., patterns with unlimited wild cards, patterns with uneven costs of the different edit operations,
multi-patterns, arbitrary regular expressions, we use new algorithms altogether. In this section, we briefly outline
the basis for two of the interesting new algorithms that we use, the algorithm for arbitrary patterns with errors and
the algorithm for multi patterns. For some more details on the algorithms see [WM91, WM92].

3.1. Arbitrary Patterns With Errors

We describe only the main idea behind the simplest case of the algorithm, finding all occurrences of a given string
in a given text. The algorithm is based on the ‘shift-or’ algorithm of Baeza-Yates and Gonnet [BG89]. Let R be a
bit array of size m (the size of the pattern). We denote by Rj the value of the array R after the j character of the
text has been processed. The array Rj contains information about all matches of prefixes of P with a suffix of the
text that ends at j. More precisely, Rj[i] =1 if the first i characters of the pattern match exactly the last i characters
up to j in the text. These are all the partial matches that may lead to full matches later on. When we read tj +1 we
need to determine whether tj +1 can extend any of the partial matches so far. The transition from Rj to Rj +1 can be
summarized as follows:

Initially, R 0[i] = 0 for all i, 1 ≤ i ≤ m ; R 0[0] = 1.

Rj +1[i] =
I
K
L 0

1

otherwise

if Rj[i −1] = 1 and pi = tj +1

If Rj +1[m] = 1 then we output a match that ends at position j +1 ;

This transition, which we have to compute once for every text character, seems quite complicated. How-
ever, suppose that m ≤ 32 (which is usually the case in practice), and that R is represented as a bit vector using one
32-bit word. For each character si in the alphabet we construct a bit array Si of size m such that Si[r] =1 if pr = si .
(It is sufficient to construct the S arrays only for the characters that appear in the pattern.) It is easy to verify now
that the transition from Rj to Rj +1 amounts to no more than a right shift of Rj and an AND operation with Si ,
where si = tj +1. So, each transition can be executed with only two simple arithmetic operations, a shift and an

AND.2

Suppose now that we want to allow one substitution error. We introduce one more array, denoted by R j
1,

which indicates all possible matches up to tj with at most one substitution. The transition for the R array is the
same as before. We need only to specify the transition for R 1. There are two cases for a match with at most one
substitution of the first i characters of P up to tj +1:
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
2 We assume that the right shift fills the first position with a 1. If only 0-filled shifts are available (as is the case with C), then we can add one
more OR operation with a mask that has one bit. Alternatively, we can use 0 to indicate a match and an OR operation instead of an AND; that
way, 0-filled shifts are sufficient. This is counterintuitive to explain (and it is not adaptable to some of the extensions), so we opted for the
easier definition.

S1. There is an exact match of the first i −1 characters up to tj This case corresponds to substituting tj +1 with pi

(whether or not they are equal — the equality will be indicated in R) and matching the first i −1 characters.

S2. There is a match of the first i −1 characters up to tj with one substitution and tj +1 =pi .

It turns out that both cases can be handled with two arithmetic operations on R 1. If we allow insertions,
deletions, and substitutions, then we will need 4 operations on R 1. If we want to allow more than one error, then
we maintain more than one additional R 1 array. Overall, the number of operations is proportional to the number
of errors. But we can do even better than that.

Suppose again that the pattern P is of size m and that at most k errors are allowed. Let r = Q
k +1
mhhhh P; divide P

into k +1 blocks each of size r and call them P 1, P 2, ..., Pk +1. If P matches the text with at most k errors, then at
least one of the Pj’s must match the text exactly. We can search for all Pj’s at the same time (we discuss how to
do that in the next paragraph) and, if one of them matches, then we check the whole pattern directly (using the
previous scheme) but only within a neighborhood of size m from the position of the match. Since we are looking
for an exact match, there is no need to maintain the additional vectors. This scheme will run fast if the number of
exact matches to any one of the Pj’s is not too high.

The main advantage of this scheme is that the algorithm for exact matching can be adapted in an elegant
way to support it. We illustrate the idea with an example. Suppose that the pattern is ABCDEFGHIJKL (m =12)
and k =3. We divide the pattern into k +1 =4 blocks: ABC, DEF, GHI, and JKL. We need to find whether any of
them appears in the text. We create one combined pattern by interleaving the 4 blocks: ADGJBEHKCFIL. We
then build the mask vector R as usual for this interleaved pattern. The only difference is that, instead of shifting
by one in each step, we shift by four! There is a match if any of the last four bits is 1. (When we shift we need to
fill the first four positions with 1’s, or better yet, use shift-OR.) Thus, the match for all blocks can be done exactly
the same way as regular matches and it takes essentially the same running time.

The algorithm described so far is efficient for simple string matching. But more important, it is also adapt-
able to many extensions of the basic problem. For example, suppose that we want to search for ABC followed by
a digit, which is defined in agrep by ABC[0-9]. The only thing we need to do is in the preprocessing, for each
digit, allow a match at position 4. Everything else remains exactly the same. Other extensions include arbitrary
wild cards, a combination of patterns with and without errors, different costs for insertions, deletions, and/or sub-
stitutions, and probably the most important, arbitrary regular expressions. We have no room to describe the imple-
mentation of these extensions (see [WM91]). The main technique is to use additional masking and preprocessing.
It is sometimes relatively easy (as is the case with wild cards) and it sometimes requires clever ideas (as is the case
with arbitrary regular expressions with errors). Next, we describe a very fast algorithm for multiple patterns
which also leads to a fast approximate-matching algorithm for simple patterns.

3.2. An Algorithm for Multi Patterns

Suppose that the pattern consists of a set of k simple patterns P 1, P 2, ..., Pk , such that each Pi is a string of m char-
acters from a fixed alphabet Σ. The text is again a large string T of characters from Σ. (We assume that all sub-
patterns have the same size for simplicity of description only; agrep makes no such assumption.) The multi-
pattern string matching problem is to find all substrings in the text that match at least one of the patterns in the set.

The first efficient algorithm for solving this problem is by Aho and Corasick [AC75], which solves the prob-
lem in linear time. (This algorithm is the basis of fgrep.) Commentz-Walter [CW79] presented an algorithm
which combines the Boyer-Moore technique with the Aho-Corasick algorithm. The Commentz-Walter Algorithm
is substantially faster than the Aho-Corasick algorithm when the number of patterns is not too big. The pattern
matching tool gre [Hu91] (which covers almost all functions of egrep/grep/fgrep) developed by Andrew Hume
has incorporated the Commentz-Walter algorithm for the multi-pattern string matching problem.

Our algorithm uses a hashing technique combined with a different Boyer-Moore technique. Instead of
building a shift table based on single characters, we build the shift table based on a block of characters. (The idea
of using a block of characters was first proposed by Knuth-Morris-Pratt in section 8 of [KMP77].) Like other
Boyer-Moore style algorithms, our algorithm preprocesses the patterns to build some data structures such that the
search process can be speeded up. Let c denote the size of the alphabet, M = k . m, and b = R logcM H. We assume
that b ≤ m/2. In the preprocessing, a shift table SHIFT and a hashing table HASH are built. We look at the text b
characters at a time. The values in the SHIFT table determine how far we can shift forward during the search pro-
cess. The shift table SHIFT is an array of size c b. Each entry of SHIFT corresponds to a distinct substring of
length b. Let X = x 1x 2

. . . xb be a string corresponding to the i’th entry of SHIFT. There are two cases: either X
appears somewhere in one of the Pj’s or not. For the latter case, we store m−b+1 in SHIFT [i]. For the former
case, we find the rightmost occurrence of X in any of the Pj’s that contain it; suppose it is in Py and that X ends at
position q of Py . Then we store m −q in SHIFT [i].

If the shift value is > 0, then we can safely shift. Otherwise, it is possible that the current substring we are
looking at in the text matches some pattern in the pattern list. To avoid comparing the substring to every pattern in
the pattern list, we use a hashing technique to minimize the number of patterns to be compared. In the preprocess-
ing we build a hash table HASH such that a pattern with hash value j is put in a linked-list pointed to by HASH [j].
So, in the search process, whenever we are going to compare current aligned substring to the patterns, we first
compute the hash value of the substring and compare the substring only to those patterns that have the same hash
value. The algorithm for searching the text is sketched in Figure 1.

The multi-pattern matching algorithm described above can be used to solve the approximate string-matching
problem. Let P = p 1 ,p 2 ,..., pM be a pattern string, and let T = a 1,a 2,...aN be a text string. We partition P into
k +1 fragments P 1,P 2,...,Pk +1, each of size m = M/(k +1). Let Ti j = ai ,...,aj be a substring of T. By a pigeonhole
principle, if Ti j differs from P by no more than k errors, then one of the fragment must match a substring of Ti j

exactly.

The approximate string matching algorithm is conducted in two phases. In the first phase we partition the
pattern into k +1 fragments and use the multi-pattern string matching algorithm to find all those places that contain
one of the fragments. If there is a match of a fragment at position i of the text, we mark the positions i −M −k to
i +M +k −m as a ’candidate’ area. After the first phase is done we apply the approximate matching algorithm
described in section 3.1 to find the actual matches in those marked area. (If the pattern size is > 32, we use

Algorithm Multi-Patterns
Let p be the current position of the text ;
while (p < N) /* N is the end position of the text */
{

blk_idx = map(ap −b +1ap −b +2
. . . ap) /* map transforms a string of size b into an integer */

shift_value = SHIFT [blk_idx];
if (shift_value > 0) p = p + shift_value;
else

compute the hash value of ap −m +1
. . . ap;

compare ap −m +1
. . . ap to every pattern that has the same hash value;

if there is a match then reports ap −m +1
. . . ap;

p = p + 1;
}

Figure 1: A sketch of the algorithm for multi-pattern searching.

Ukkonen’s O (Nk) expected-time algorithm [Uk85].)

Our algorithm is very fast when the pattern is long and the number of errors is not high (assuming that
k < M/logbM). Unlike the approximate Boyer-Moore string matching algorithm in [TU90], whose performance
degrades greatly when the size of the alphabet set is small, our algorithm is not sensitive to the alphabet size. For
example, for DNA patterns of size 500, allowing 25 errors, our algorithm is about two orders of magnitude faster
than Ukkonen’s O (Nk) expected-time algorithm [Uk85] and algorithm MN2 [GP90] (which are the two fastest
algorithms among the algorithms compared in [CL90]). Experimental results are given in the next section. The
algorithm is very fast for practical applications for searching both English text and DNA data.

4. Experimental Results

We present four brief experiments. The numbers given here should be taken with caution. Any such results
depend on the architecture, the operating system, the compilers used, not to mention the patterns and test files.
These tests are by no means comprehensive. They are given here to show that agrep is fast enough to be used for
large files. Differences of 20-30% in the running times are not significant. Thus, all Boyer-Moore type programs
are about the same for simple patterns. Agrep seems better for multi patterns. For approximate matching, agrep is
one to two orders of magnitude faster than other programs that we tested. We believe that the main strength of
agrep is that it is more flexible, general, and convenient than all previous programs.

All tests were run on a SUN SparcStation II running UNIX. Two files were used, both of size 1MB, one a
sub-dictionary and one a collection of bibliographic data. The numbers are in seconds and are the averages of
several experiments. They were measured by the time facility in UNIX and only user times were taken (which
adds considerably to their impreciseness).

Table 1 compares agrep against other programs for exact string matching. The first three programs use
Boyer-Moore type algorithms. The original egrep does not. We used 50 words of varying sizes (3-12) as patterns
and averaged the results.

ii
text size agrep gre e?grep egrepii
1Mb 0.09 0.11 0.11 0.79
200Kb 0.028 0.024 0.038 0.218iic

c
c
c
c

c
c
c
c
c

Table 1: Exact matching of simple strings.

Table 2 shows results of searching for multi patterns. In the first line the pattern consisted of 50 words (the
same words that were used in Table 1, but all in once) searched inside a dictionary; in the second line the pattern
consists of 20 separate titles (each two words long), searched in a bibliographic file.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
pattern agrep gre e?grep fgrepiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
50 words 1.15 2.57 6.11 8.13
20 titles 0.18 0.71 1.53 5.64iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic

c
c
c
c

c
c
c
c
c

Table 2: Exact matching of multi patterns.

Table 3 shows typical running times for approximate matching. Two patterns were used — ‘matching’ and
‘string matching’ — and we tested each one with 1, 2, and 3 errors (denoted by Er). Other programs that we
tested did not come close.

ii
pattern Er = 1 Er = 2 Er = 3ii
‘string matching’ 0.26 0.55 0.76
‘matching’ 0.22 0.66 1.14iic

c
c
c
c

c
c
c
c
c

Table 3: Approximate matching of simple strings.

Table 4 shows typical running times for more complicated patterns, including regular expressions. Agrep
does not yet use any Boyer-Moore type filtering for these patterns. As a result, the running times are slower than
they are for simpler patterns. The best algorithm we know for approximate matching to arbitrary regular expres-
sions is by Myers and Miller [MM89]. Its running times for the cases we tested were more than an order of mag-
nitude slower than our algorithm, but this is not a fair test, because Myers and Miller’s algorithm can handle arbi-
trary costs (which we cannot handle) and its running time is independent of the number of errors (which makes it
competitive with or better than ours if the number of errors is very large).

iii
pattern Er = 0 Er = 1 Er = 2 Er = 3iii
<Hom>ogenious 0.53 1.10 1.42 1.74
JACM; 1981; Graph 0.53 1.10 1.43 1.75
Prob#tic; Algo#m 0.55 1.10 1.42 1.76
<[CJ]ACM>; Prob#tic; trees 0.54 1.11 1.43 1.75
(<[23]>−[23]*|).*<Tr>ees 0.66 1.53 2.19 2.83iiic

c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

Table 4: Approximate matching of complicated patterns.

5. Conclusions

Searching text in the presence of errors is commonly done ‘by hand’ — one tries many possibilities. This is frus-
trating, slow, and with no guarantee of success. Agrep can alleviate this problem and make searching in general
more robust. It also makes searching more convenient by not having to spell everything precisely. Agrep is very
fast and general and it should find numerous applications. It has already been used in the Collaboratory system
[HPS90], in a new tool (under development) for locating files in a UNIX system [FMW92], and in a new algo-
rithm for finding information in a distributed environment [FM92]. In the last two applications, agrep is modified
in a novel way to search inside specially compressed files without having to decompress them first.

Acknowledgements:
We thank Ricardo Baeza-Yates, Gene Myers, and Chunghwa Rao for many helpful conversations about approxi-
mate string matching and for comments that improved the manuscript. We thank Ric Anderson, Cliff Hathaway,
Andrew Hume, David Sanderson, and Shu-Ing Tsuei for their help and comments that improved the implementa-
tion of agrep. We also thank William Chang and Andrew Hume for kindly providing programs for some of the
experiments.

References

[AC75]
Aho, A. V., and M. J. Corasick, ‘‘Efficient string matching: an aid to bibliographic search,’’ Communica-
tions of the ACM 18 (June 1975), pp. 333−340.

[Ba89]
Baeza-Yates R. A., ‘‘Improved string searching,’’ Software — Practice and Experience 19 (1989), pp.
257−271.

[BG89]
Baeza-Yates R. A., and G. H. Gonnet, ‘‘A new approach to text searching,’’ Proceedings of the 12th Annual
ACM-SIGIR conference on Information Retrieval, Cambridge, MA (June 1989), pp. 168−175.

[BM77]
Boyer R. S., and J. S. Moore, ‘‘A fast string searching algorithm,’’ Communications of the ACM 20
(October 1977), pp. 762−772.

[CL90]
Chang W. I., and E. L. Lawler, ‘‘Approximate string matching in sublinear expected time,’’ the 31th Annual
Symp. on Foundations of Computer Science, (October 1990), pp. 116−124.

[CW79]
Commentz-Walter, B, ‘‘A string matching algorithm fast on the average,’’ Proc. 6th International Collo-
quium on Automata, Languages, and Programming (1979), pp. 118−132.

[FM92]
Finkel R. A., and U. Manber, ‘‘The design and implementation of a server for retrieving distributed data,’’
in preparation.

[FMW92]
Finkel R. A., U. Manber, and S. Wu, ‘‘Findfile — a tool for locating files in a large file system,’’ in prepara-
tion.

[GP90]
Galil Z., and K. Park, ‘‘An improved algorithm for approximate string matching,’’ SIAM J. on Computing
19 (December 1990), pp. 989−999.

[Ha89]
Haertel, M., ‘‘GNU e?grep,’’ Usenet archive comp.source.unix, Volume 17 (February 1989).

[HPS90]
Hudson, S. E., L. L. Peterson, and B. R. Schatz, ‘‘Systems Technology for Building a National Collabora-
tory,’’ University of Arizona Technical Report #TR 90-24 (July 1990).

[HS91]
Hume A., and D. Sunday, ‘‘Fast string searching,’’ Software — Practice and Experience 21 (November
1991), pp. 1221−1248.

[Hu91]
Hume A., personal communication (1991).

[KMP77]
Knuth D. E., J. H. Morris, and V. R. Pratt, ‘‘Fast pattern matching in strings,’’ SIAM Journal on Computing
6 (June 1977), pp. 323−350.

[MM89]
Myers, E. W., and W. Miller, ‘‘Approximate matching of regular expressions,’’ Bull. of Mathematical Biol-
ogy 51 (1989), pp. 5−37.

[TU90]
Tarhio J. and E. Ukkonen, ‘‘Approximate Boyer-Moore string matching,’’ Technical Report #A-1990-3,
Dept. of Computer Science, University of Helsinki (March 1990).

[Uk85]
Ukkonen E., ‘‘Finding approximate patterns in strings,’’ Journal of Algorithms 6 (1985), pp. 132−137.

[WM91]
Wu S. and U. Manber, ‘‘Fast Text Searching With Errors,’’ Technical Report TR-91-11, Department of
Computer Science, University of Arizona (June 1991).

[WM92]
Wu S. and U. Manber, ‘‘Filtering search approach for some string matching problems,’’ in preparation.

Biographical Sketches

Sun Wu is a Ph.D. candidate in computer science at the University of Arizona. His research interests include
design of algorithms, in particular, string matching and graph algorithms.

Udi Manber is a professor of computer science at the University of Arizona, where he has been since 1987. He
received his Ph.D. degree in computer science from the University of Washington in 1982. His research interests
include design of algorithms and computer networks. He is the author of ‘‘Introduction to Algorithms - A
Creative Approach’’ (Addison-Wesley, 1989). He received a Presidential Young Investigator Award in 1985, the
best paper award of the seventh International Conference on Distributed Computing Systems, 1987, and a Dis-
tinguished Teaching Award of the Faculty of Science at the University of Arizona, 1990.

