SNORT® Users Manual
2.8.6

The Snort Project

March 19, 2010

Copyright(©1998-2003 Martin Roesch
Copyright(©2001-2003 Chris Green
Copyright(©2003-2010 Sourcefire, Inc.

Contents

[L__Snort Overview 8
L1 _Getfing Startdd e 8
L2 _snifferMade 8
L3 PacketloggerMaole 9
[1.4 Network Intrusion Detection System Mbde e 10

.41 NIDS Mode Qutput Options o vttt e e e 10
.42 Understanding Standard Alert OUkput ot i 11
.43 High Performance Configurafion 0 11
44 ChangingAlertOrder 12
L5 InlineModk e 12
51 _Snortinline Rule Application OMEr . . . o . o o v voee et e e e e e e 13
.52 Replacing Packets with SnortInline 13
.53 Installing Snortlnlide 13
.54 RunningSnortinlihe 14
55 Using the Honeynet Snom Inine TodKit« o o v oo v e e e e e e e e 14
[L5.6 TroubleshoofingSnortinline 14
L6 Miscellaneolis e 15
.61 RunningSnortasaDaehon 15
.62 Runningin Rule Stub Creation Mbdeceoivvnn. ... 15
[.6.3 Obfuscating IP Address Printdutst e 15
[1.6.4 Specifying Multiple-Instance Identifilers 16
L7 Reading Pcaps. o oo 16
[L7.1 Commandline argumeintS vttt e 16
D72 Examplds 16
L8 Tunneling Protocol Suppbrt. e 18
.81 Multiple Encapsulationsot 18
82 Togginh o oo 18
L9 Morelnformatidh e 19

B ncludds 20
D11 Formdt 20
P12 NVamabldso 20
P13 Confl. . . . oo 23

P2 Prepracessbrs 31
P21 Fradd 32
P22 Streaml5 35
D23 sfPartschn. e 40
24 RPCDecalle 45
.25 Performance MONMOr o e e 46
P26 HITPINSPACt o o oo oo e e e 49
P27 SMTP Prepracesbor 59
2.2.8 FTP/Telnet PreproCedsor v vt v e e e e e e e e e 61
P29 SSH 68
£210 DCEIRPIC 69
P2I1DNE 71
P2I2 SSITTIR . . o oo 72
2213 ARP SpaofPrepracedsor e 74
2.2.14 DCE/RPC 2 PreproCeaSOr v v v v v i e e e e e e e e e e 75
.2.15 Sensitive Data Prepracebsor e 88

.3 Decoderand PreprocessorRUles e 91
P31 Configuring 91
.32 _Reverfingto ariginalbehavior 92

P4 EventProcessihg 92
P41 RateFilteridg 93
B22 EVenthIenng o o v o oot 94
.43 FventSuppresslon 96
P44 Fventloggidg 97

5 PerformanceProfilihg 98
P51 RuleProfilidg 98
2.5.2 PreprocessorProfiling 100
b 53 Packet Performance Monitoring (PPM) oo e e e 102

P6 OutputModulds 105
P61 alertsyslof 061
D62 alerffast 710
P63 alerfullo a0
P64 alerunixsack. 108
P65 logtcpdumb 081

D67 Cav . . 110
P68 unifieh 111
P69 unifiedD 112
2610 alerprelude 121
D611 dognul 113
2612 alemfarubaactioh 113
613 1oglimitb 114
P7 HostAttribute Table 114
P71 ConfigurationFormdat 114
P72 Atribute Table File Formato 115
2.8 DynamicModUl®Sttt 117
P81 Formdt 117
P82 Directivds 117
2.9 Reloadinga Snort Configurafion 117
.91 FEnablingsuppdrt 118
P92 Reloadingaconfiguratlon 118
2.9.3 Non-reloadable configuration ptionso 118
.10 Multiple Configuratiohs e 120
.10.1 Creating Multiple Configuratidns 120
[.10.2 Configuration Specific Elemdnts 120
2.10.3 How Configurationisapplidd? e 122
B__Writing Snort Ruled 123
B _TREBASIES . . . o o o oo 123
B2 RulesHeaddrs 123
B21 RuleActiods 123
B22 Protacalsot 124
B23 IPAddressks 124
B24 PortNumbdrs 125
B25 TheDirectionOperalor e 125
B.2.6 Activate/DynamicRules 126
B3 RuULOPHONSttt et e e 126
B4 GeneralRUle OPHONS o\ ot e e 127
Bal _mdy . . . 127
B42 teferende 127
B3 gifl 128
Baa _sill. ... 128
BAS el .. . 129

BAZ DHOM . . o o o oo e e e 130
B48 metaddta 131
B.49 GeneralRule QuickReferehce 131
B.5 _Payload Detection RUle OptiONS o o vttt e e e e 132
BEI _conteht 132
BE2 n0cabe.o 133
BE3 rawhvids 133
BE4 _deplho 134
BEE _OSHt . . o . oo 134
BE6E _diSIAN®e oo 134
BEZ Withih oo 135
B5.8 httpelienthady 135
B59 hitpcooki® 351
B510 hitpraw cooki® 136
B511 httpheaddr 361
B512 hitprawheaddr. 137
B513 httpmetholl 371
BEI4 ntipurd a3
B515 httprawurd 138
B5.16 hifpstatcodl o 139
BEA7 MHPSIAIMSY o e e 139
B518 httpencade 401
B519 faspatterh 140
B520 uriconteht 142
BE21 wrleh 142
BE22 ISOAIARL . . . o v o o e e 143
BE23 100l . . o 143
BE24 fledath o o oo 441
g DVEEIETt L 451
B526 hyteump 6l4
B527 ftiphounde 147
BE28 asll o 147
BE29 0B . . o 148
B530 deafacd 49
B531 dceopnumh 914
B532 deestubdath 149
B533 sshersioh, 149
BEB3A SSISIAIE . . . o o o e 149

B.6 Non-Payload Detection Rule Optibns i 150
BB _fagoffsbt o 150
BB2 1l ... 150
B3 105 . . o . 151
BOA il . . . 151
BBE _00DES -« o o e 151
BB6 _HAQDIS . . . o o oo e 152
BOZ _ASIZe . . o o oo 152
BBB HAGS . . o o o e 153
BE.O fOW . . . o oo 154
BEI0 AOWDITS o o oo 154
BBIL S0 . . . oo e 155
BEI2 a0k . . . oo 155
BOI3 windoW oo 156
BOI4 Gypk 156
B6I5 icade o 156
BEI6 Gempid o e 157
BBAZ icmpsell o 157
BEIB Ik . . o 157
BEI0 I0DDIOWD o oo, 158
BB20 Samelp o 158
B.6.21 streamsizé 158

- NCE . . . e e 159

B.7 Post-Detection RUIE OPIANS o o v o vt e e e e e 160
BZI 1ogtb . . . o 160
BZ2 Sessibn . . . oo 160
BZ3 redo . . o e 160
BZa xeabt.o 161
BZE 1Al . . o o oo 162
BZ6 AchVAI®S o o 163
BZ7 activatedhy 163
BZ8 coubt 163
BZ9 tepladeo 163
B.710 detectiodilted 164

- i NCE . . . o e e 164

B8 RuleThreshollls 165

B9 Writing GOOd RUIBS o o ot e 166
B91 ContentMatchifg e 166

[3.9.3 Catch the Oddities of the Protocalinthe Rule 166

B94 Optimizing RUIBS o o 167

B.95 TestingNumericalValdes, 168
¥__Making Snort Fastef 172
B1 MMAPedpcdp 172
i5__Dynamic Modules 173
B1 DataStructurbs 173
B11 DynamicPluginMaltao i i e 173

512 DynamicPreprocessordatao 173

B.13 DynamicEngineDatat e 174

B14 SESnortPacket 174

B15 DynamicRUIES oo 175

B2 RequiredFunctiohs 181
B21 Preprocessdrs 182

B.22 DetectionEngihe 182

B23 RUESo 183

B3 Examplds oo 184
531 PreprocessarExample 184

B32 RUES . . oo oot 186
{6__Snort Development 189

6.1 _SubmittingPatches 189
6.2 SnomtData FIOW oo e 189
B.21 Preprocessbrs 189

.22 DefectionPlugihs e 190

.23 OutputPlugihs e 190

B3 TheSnomtTedm 191

Chapter 1

Snort Overview

This manual is based aftriting Snort Ruleby Martin Roesch and further work from Chris Greenmg@snort.org .

It was then maintained by Brian Caswelbmc@snort.org and now is maintained by the Snort Team. If you have a
better way to say something or find that something in the d@ruation is outdated, drop us a line and we will update
it. If you would like to submit patches for this document, yzan find the latest version of the documentatioriigX
format in the Snort CVS repository adoc/snort_manual.tex . Small documentation updates are the easiest way to
help out the Snort Project.

1.1 Getting Started

Snort really isn’t very hard to use, but there are a lot of caandhline options to play with, and it's not always obvious
which ones go together well. This file aims to make using Seaster for new users.

Before we proceed, there are a few basic concepts you shadktstand about Snort. Snort can be configured to run
in three modes:

e Sniffer modewhich simply reads the packets off of the network and displdyem for you in a continuous
stream on the console (screen).
e Packet Logger modevhich logs the packets to disk.

e Network Intrusion Detection System (NIDS) moithe, most complex and configurable configuration, which
allows Snort to analyze network traffic for matches againster-defined rule set and performs several actions
based upon what it sees.

¢ Inline mode which obtains packets from iptables instead of from libpaagd then causes iptables to drop or
pass packets based on Snort rules that use inline-spedéitypes.

1.2 Sniffer Mode

First, let's start with the basics. If you just want to prinitahe TCP/IP packet headers to the screen (i.e. sniffer jnode
try this:

Jsnort -v

This command will run Snort and just show the IP and TCP/UDRWP headers, nothing else. If you want to see the
application data in transit, try the following:

Jsnort -vd

This instructs Snort to display the packet data as well ahéaelers. If you want an even more descriptive display,
showing the data link layer headers, do this:

Jsnort -vde

(As an aside, these switches may be divided up or smasheithégre any combination. The last command could also
be typed out as:

Jsnort -d -v -e

and it would do the same thing.)

1.3 Packet Logger Mode

OK, all of these commands are pretty cool, but if you want tord the packets to the disk, you need to specify a
logging directory and Snort will automatically know to gdarpacket logger mode:

Jsnort -dev - .Jlog

Of course, this assumes you have a directory nalwgedn the current directory. If you don't, Snort will exit with
an error message. When Snort runs in this mode, it colle@s/gacket it sees and places it in a directory hierarchy
based upon the IP address of one of the hosts in the datagram.

If you just specify a plain -1 switch, you may notice that Snemmetimes uses the address of the remote computer
as the directory in which it places packets and sometimeseis the local host address. In order to log relative to the
home network, you need to tell Snort which network is the howigvork:

Jsnort -dev - Jlog -h 192.168.1.0/24

This rule tells Snort that you want to print out the data limdal CP/IP headers as well as application data into the
directory./log , and you want to log the packets relative to the 192.1681assdC network. All incoming packets
will be recorded into subdirectories of the log directorythwthe directory names being based on the address of the
remote (non-192.168.1) host.

ANOTE

Note that if both the source and destination hosts are ondheemetwork, they are logged to a directqry
with a name based on the higher of the two port numbers orgicdise of a tie, the source address.

If you're on a high speed network or you want to log the packets a more compact form for later analysis, you
should consider logging in binary mode. Binary mode loggtaekets in tcpdump format to a single binary file in the
logging directory:

Jsnort -l Jlog -b

Note the command line changes here. We don't need to spetiba network any longer because binary mode
logs everything into a single file, which eliminates the nédell it how to format the output directory structure.
Additionally, you don’t need to run in verbose mode or spettife -d or -e switches because in binary mode the entire
packetis logged, not just sections of it. All you really néedo to place Snort into logger mode is to specify a logging
directory at the command line using the -I switch—the -b byrlagging switch merely provides a modifier that tells
Snort to log the packets in something other than the defatittud format of plain ASCII text.

Once the packets have been logged to the binary file, you eaithe packets back out of the file with any sniffer that
supports the tcpdump binary format (such as tcpdump or E#lerSnort can also read the packets back by using the

-r switch, which puts it into playback mode. Packets from sopdump formatted file can be processed through Snort
in any of its run modes. For example, if you wanted to run afyitg file through Snort in sniffer mode to dump the
packets to the screen, you can try something like this:

Jsnort -dv -r packet.log

You can manipulate the data in the file in a number of ways tjindBnort’'s packet logging and intrusion detection
modes, as well as with the BPF interface that's availableftloe command line. For example, if you only wanted to
see the ICMP packets from the log file, simply specify a BPE(fitt the command line and Snort will only see the
ICMP packets in the file:

Jsnort -dvr packet.log icmp

For more info on how to use the BPF interface, read the Snart@dump man pages.

1.4 Network Intrusion Detection System Mode

To enable Network Intrusion Detection System (NIDS) modéhst you don’t record every single packet sent down
the wire, try this:

Jsnort -dev -l Jlog -h 192.168.1.0/24 -c snort.conf

wheresnort.conf is the name of your rules file. This will apply the rules configdiin thesnort.conf file to
each packet to decide if an action based upon the rule typmifile should be taken. If you don'’t specify an output
directory for the program, it will default tévar/log/snort

One thing to note about the last command line is that if Srsogiing to be used in a long term way as an IDS, the
-v switch should be left off the command line for the sake afexgh The screen is a slow place to write data to, and
packets can be dropped while writing to the display.

It's also not necessary to record the data link headers fat yaplications, so you can usually omit the -e switch, too.
Jsnort -d -h 192.168.1.0/24 -l .llog -c snort.conf

This will configure Snort to run in its most basic NIDS formglying packets that trigger rules specified in the
snort.conf in plain ASCII to disk using a hierarchical directory strui (just like packet logger mode).

1.4.1 NIDS Mode Output Options

There are a number of ways to configure the output of Snort DS\inode. The default logging and alerting mecha-
nisms are to log in decoded ASCII format and use full alertee full alert mechanism prints out the alert message in
addition to the full packet headers. There are several atleer output modes available at the command line, as well
as two logging facilities.

Alert modes are somewhat more complex. There are sevenratetes available at the command line: full, fast,
socket, syslog, console, cmg, and none. Six of these modescaessed with the -A command line switch. These
options are:

Option Description

-A fast Fast alert mode. Writes the alert in a simple format with aestamp, alert message, source and
destination IPs/ports.

-A full Full alert mode. This is the default alert mode and will bedugetomatically if you do not specify
a mode.

-A unsock Sends alerts to a UNIX socket that another program can lsten

-A none Turns off alerting.

-A console Sends “fast-style” alerts to the console (screen).

-A cmg Generates “cmg style” alerts.

10

Packets can be logged to their default decoded ASCII formtt a binary log file via the -b command line switch.
To disable packet logging altogether, use the -N commadshmitch.

For output modes available through the configuration file, Sectio 216.

ANOTE

Command line logging options override any output optiorecefied in the configuration file. This allows
debugging of configuration issues quickly via the commanel.i

To send alerts to syslog, use the -s switch. The defaulitiasifor the syslog alerting mechanism are LAGTHPRIV
and LOGALERT. If you want to configure other facilities for syslog tput, use the output plugin directives in the
rules files. See Secti@n 2.6.1 for more details on configwsirsipg output.

For example, use the following command line to log to deféddcoded ASCII) facility and send alerts to syslog:
Jsnort -¢ snort.conf -I Jlog -h 192.168.1.0/24 -s

As another example, use the following command line to lodéodefault facility in /var/log/snort and send alerts to a
fast alert file:

Jsnort -c snort.conf -A fast -h 192.168.1.0/24

1.4.2 Understanding Standard Alert Output

When Snort generates an alert message, it will usually likekthe following:
[**] [116:56:1] (snort_decoder): T/TCP Detected [**]

The first number is the Generator ID, this tells the user wioatmonent of Snort generated this alert. For a list of
GIDs, please read etc/generators in the Snort source. drcéisie, we know that this event came from the “decode”
(116) component of Snort.

The second number is the Snort ID (sometimes referred toggmagire ID). For a list of preprocessor SIDs, please see
etc/gen-msg.map. Rule-based SIDs are written directtytim rules with thesid option. In this case&;6 represents a
T/TCP event.

The third number is the revision ID. This number is primarilyed when writing signatures, as each rendition of the
rule should increment this number with the option.

1.4.3 High Performance Configuration

If you want Snort to gdast(like keep up with a 1000 Mbps connection), you need to uskadibgging and a unified
log reader such asarnyard This allows Snort to log alerts in a binary form as fast assfige while another program
performs the slow actions, such as writing to a database.

If you want a text file that’s easily parsable, but still sorhevfast, try using binary logging with the “fast” output
mechanism.

This will log packets in tcpdump format and produce minimalis. For example:

Jsnort -b -A fast -c snort.conf

11

1.4.4 Changing Alert Order

The default way in which Snort applies its rules to packetyg m@ be appropriate for all installations. The Pass rules
are applied first, then the Drop rules, then the Alert ruled famally, Log rules are applied.

I
ANOTE

Sometimes an errant pass rule could cause alerts to not ghoww which case you can change the defgqult
ordering to allow Alert rules to be applied before Pass rulésr more information, please refer to the

--alert-before-pass option.

Several command line options are available to change threr ordvhich rule actions are taken.

e --alert-before-pass option forces alert rules to take affect in favor of a pase.rul

o --treat-drop-as-alert causes drop, sdrop, and reject rules and any associat¢sitalée logged as alerts,
rather then the normal action. This allows use of an inlinkcgavith passive/IDS mode.

e --process-all-events option causes Snort to process every event associated wébket, while taking the
actions based on the rules ordering. Without this optiofiaialecase), only the events for the first action based
on rules ordering are processed.

ANOTE

Pass rules are special cases here, in that the event prugésserminated when a pass rule is encountefed,
regardless of the use eprocess-all-events

1.5 Inline Mode

Snort 2.3.0 RC1 integrated the intrusion prevention sygi€&8) capability ofSnort Inline into the official Snort
project.Snort Inline obtains packets from iptables instead of libpcap and thes new rule types to help iptables
pass or drop packets based on Snort rules.

In order forSnort Inline to work properly, you must download and compile the iptaldede to include “make
install-devel” |ttp:/lwww.iptables.org). This will install thelibipg library that allowsSnort Inline to inter-
face with iptables. Also, you must build and install LibNehich is available frorimttp://iwww.packettactory.net

There are three rule types you can use when running SnoriSndtt Inline

e drop - The drop rule type will tell iptables to drop the packet aag it via usual Snort means.

e reject - The reject rule type will tell iptables to drop the packeq lit via usual Snort means, and send a TCP
reset if the protocol is TCP or an icmp port unreachable ifgf@ocol is UDP.

e sdrop - The sdrop rule type will tell iptables to drop the packet.tiNog is logged.

\NOTE

You can also replace sections of the packet payload wheg 8sit Inline . See SectiohI.H.2 for more
information.

When using aeject rule, there are two options you can use to send TCP resets:

e You can use a RAW socket (the default behaviorSoort Inline), in which case you must have an interface
that has an IP address assigned to it. If there is not an auerkith an IP address assigned with access to the
source of the packet, the packet will be logged and the reszgh will never make it onto the network.

12

http://www.iptables.org
http://www.packetfactory.net

e You can also now perform resets via a physical device whemguigitables. We take the indev name from
ip_queue and use this as the interface on which to send resetaoVaager need an IP loaded on the bridge,
and can remain pretty stealthy as tioefig layer2 _resets in snort.conf takes a source MAC address which
we substitute for the MAC of the bridge. For example:

config layer2resets

tells Snort Inline to use layer2 resets and uses the MAC address of the bridgeeaource MAC in the
packet, and:

config layer2resets: 00:06:76:DD:5F:E3

will tell Snort Inline to use layer2 resets and uses the sosMAC of 00:06:76:DD:5F:E3 in the reset packet.

e The command-line optiondisable-inline-initialization can be used to not initialize IPTables when in
inline mode. It should be used with command-line optibrto test for a valid configuration without requiring
opening inline devices and adversely affecting traffic flow.

1.5.1 Snort Inline Rule Application Order

The current rule application order is:
->activation->dynamic->pass->drop->sdrop->reject->a lert->log

This will ensure that a drop rule has precedence over an@iéog rule.

1.5.2 Replacing Packets with Snort Inline

Additionally, Jed Haile’s content replace code allows yourtodify packets before they leave the network. For
example:

alert tcp any any <> any 80 (\
msg: "tcp replace”; content"GET"; replace:"BET")

alert udp any any <> any 53 (\
msg: "udp replace"; content: "yahoo"; replace: "Xxxxx";)

These rules will comb TCP port 80 traffic looking for GET, an®® port 53 traffic looking for yahoo. Once they
are found, they are replaced with BET and xxxxx, respedtivéhe replace pattern and content can be of different
lengths. When the replace pattern is longer than the cqrttemteplace pattern gets truncated and when the replace
pattern is shorter than the content, first few bytes of thaemn(equivalent to the length of the replace pattern) are
replaced.

1.5.3 Installing Snort Inline

To install Snort inline, use the following command:

Jconfigure --enable-inline
make
make install

13

1.5.4 Running Snort Inline

First, you need to ensure that thedmeue module is loaded. Then, you need to send traffic to Smone using the
QUEUE target. For example:

iptables -A OUTPUT -p tcp --dport 80 -j QUEUE

sends all TCP traffic leaving the firewall going to port 80 te tPUEUE target. This is what sends the packet from
kernel space to user spa@nfrt Inline). A quick way to get all outbound traffic going to the QUEUEdsuse the
rc.firewall script created and maintained by the Honeynejget jttp://www.noneynet.org/papers/noneynetitools/

This script is well-documented and allows you to direct gaskoSnort Inline by simply changing the QUEUE
variable to yes.

Finally, start Snort Inline:
snort -QDc ../etc/drop.conf -I /var/llog/snort
You can use the following command line options:

e -Q - Gets packets from iptables.
e -D - RunsSnort Inline in daemon mode. The process ID is storefafrun/snort.pid
e ¢ - Reads the following configuration file.
e -| -Logs to the following directory.
Ideally, Snort Inline will be run using only its own drop.ad. If you want to use Snort for just alerting, a separate

process should be running with its own rule set.

1.5.5 Using the Honeynet Snort Inline Toolkit

The Honeynet Snort Inline Toolkit is a statically compil&abrt Inline binary put together by the Honeynet Project
for the Linux operating system. It comes with a set of drdesutheSnort Inline binary, a snort-inline rotation
shell script, and a good README. It can be found at:

nttp://www.honeynet.org/papers/noneynet/tools/

1.5.6 Troubleshooting Snort Inline

If you run Snort Inline and see something like this:
Initializing Output Plugins!
Reading from iptables
Log directory = Ivar/log/snort
Initializing Inline mode
Inlinelnit: : Failed to send netlink message: Connection re fused

More than likely, the ipgueue module is not loaded or_fueue support is not compiled into your kernel. Either
recompile your kernel to supportigueue, or load the module.

The ip.queue module is loaded by executing:
insmod ip_queue

Also, if you want to ensure Snort Inline is getting packets) gan start it in the following manner:
snort -Qvc <configuration file>

This will display the header of every packet that Snort lalgees.

14

http://www.honeynet.org/papers/honeynet/tools/
http://www.honeynet.org/papers/honeynet/tools/

1.6 Miscellaneous

1.6.1 Running Snort as a Daemon

If you want to run Snort as a daemon, you can the add -D switahyaombination described in the previous sections.
Please notice that if you want to be able to restart Snort bgliag a SIGHUP signal to the daemon, youstspecify

the full path to the Snort binary when you start it, for exaepl

lusr/local/bin/snort -d -h 192.168.1.0/24 \
-| Ivarflog/snortlogs -c /usr/local/etc/snort.conf -s -D

Relative paths are not supported due to security concerns.

Snort PID File

When Snort is run as a daemon , the daemon creates a PID file iogtdirectory. In Snort 2.6, thepid-path
command line switch causes Snort to write the PID file in theaory specified.

Additionally, the--create-pidfile switch can be used to force creation of a PID file even when mming in
daemon mode.

The PID file will be locked so that other snort processes castant. Use the-nolock-pidfile switch to not lock
the PID file.

1.6.2 Running in Rule Stub Creation Mode

If you need to dump the shared object rules stub to a directorymight need to use the —dump-dynamic-rules option.
These rule stub files are used in conjunction with the shabgetbrules. The path can be relative or absolute.

lusr/local/bin/snort -c /ust/local/etc/snort.conf \
--dump-dynamic-rules=/tmp

This path can also be configured in the snort.conf using thégoption dump-dynamic-rules-path as follows:
config dump-dynamic-rules-path: /tmp/sorules
The path configured by command line has precedence over theamfigured using dump-dynamic-rules-path.

lusr/local/bin/snort -c /ust/local/etc/snort.conf \
--dump-dynamic-rules

snort.conf:
config dump-dynamic-rules-path: /tmp/sorules

In the above mentioned scenario the dump path is set to /omybés.

1.6.3 Obfuscating IP Address Printouts

If you need to post packet logs to public mailing lists, yowghtiwant to use the -O switch. This switch obfuscates
your IP addresses in packet printouts. This is handy if yoo'tdeant people on the mailing list to know the IP
addresses involved. You can also combine the -O switch Wwéhh switch to only obfuscate the IP addresses of hosts
on the home network. This is useful if you don’t care who séesaddress of the attacking host. For example, you
could use the following command to read the packets from dilegnd dump them to the screen, obfuscating only
the addresses from the 192.168.1.0/24 class C network:

Jsnort -d -v -r snortlog -O -h 192.168.1.0/24

15

1.6.4 Specifying Multiple-Instance Identifiers

In Snortv2.4, theG command line option was added that specifies an instancgfidefor the eventlogs. This option
can be used when running multiple instances of snort, eghatifferent CPUs, or on the same CPU but a different
interface. Each Snort instance will use the value specifiggeherate unique event IDs. Users can specify either a
decimal value{G 1) or hex value preceded by 03 0x11). This is also supported via a long optielogid

1.7 Reading Pcaps

Instead of having Snort listen on an interface, you can diaepiacket capture to read. Snort will read and analyze the
packets as if they came off the wire. This can be useful fdingsnd debugging Snort.

1.7.1 Command line arguments

Any of the below can be specified multiple times on the commamed(-r included) and in addition to other Snort
command line options. Note, however, that specifyipgap-reset ~ and--pcap-show multiple times has the same
effect as specifying them once.

Option Description

-r <file> Read a single pcap.

--pcap-single=<file> Same as -r. Added for completeness.

--pcap-file=<file> File that contains a list of pcaps to read. Can specify paficép or directory to
recurse to get pcaps.

--pcap-list="<list>" A space separated list of pcaps to read.

--pcap-dir=<dir> A directory to recurse to look for pcaps. Sorted in ascii orde

--pcap-filter=<filter> Shell style filter to apply when getting pcaps from file or diary. This fil-
ter will apply to any--pcap-file or --pcap-dir arguments following. Use
--pcap-no-filter to delete filter for following--pcap-file or --pcap-dir
arguments or specifypcap-filter again to forget previous filter and to apply
to following --pcap-file or--pcap-dir arguments.

--pcap-no-filter Reset to use no filter when getting pcaps from file or directory

--pcap-reset If reading multiple pcaps, reset snort to post-configurastate before reading
next pcap. The default, i.e. without this option, is not teetestate.

--pcap-show Print a line saying what pcap is currently being read.

1.7.2 Examples
Read a single pcap

$ snort -r foo.pcap
$ snort --pcap-single=foo.pcap

Read pcaps from a file
$ cat foo.txt
fool.pcap
foo2.pcap
/home/foo/pcaps

$ snort --pcap-file=foo.txt

This will read fool.pcap, foo2.pcap and all files under /howpcaps. Note that Snort will not try to determine
whether the files under that directory are really pcap filesatr

16

Read pcaps from a command line list

$ snort --pcap-list="fool.pcap foo2.pcap foo3.pcap"

This will read fool.pcap, foo2.pcap and foo3.pcap.

Read pcaps under a directory

$ snort --pcap-dir="/home/foo/pcaps"

This will include all of the files under /Thome/foo/pcaps.

Using filters

$ cat foo.txt
fool.pcap
foo2.pcap
/home/foo/pcaps

$ snort --pcap-filter="*.pcap" --pcap-file=foo.txt
$ snort --pcap-filter="*.pcap" --pcap-dir=/home/foo/pc aps

The above will only include files that match the shell pattérpcap”, in other words, any file ending in ".pcap”.

$ snort --pcap-filter="*.pcap --pcap-file=foo.txt \
> --pcap-filter="*.cap" --pcap-dir="home/foo/pcaps

In the above, the first filter "*.pcap” will only be applied the pcaps in the file "foo.txt” (and any directories that are
recursed in that file). The addition of the second filter "htwill cause the first filter to be forgotten and then applied
to the directory /home/foo/pcaps, so only files ending imptwill be included from that directory.

$ snort --pcap-filter="*.pcap --pcap-file=foo.txt \
> --pcap-no-filter --pcap-dir=rhome/foo/pcaps

In this example, the first filter will be applied to foo.txt,eh no filter will be applied to the files found under
/home/foo/pcaps, so all files found under /home/foo/pcapbe/included.

$ snort --pcap-filter="*.pcap --pcap-file=foo.txt \
> --pcap-no-filter --pcap-dir="home/foo/pcaps \
> --pcap-filter="*.cap" --pcap-dir=’home/foo/pcaps2

In this example, the first filter will be applied to foo.txt,eh no filter will be applied to the files found under
/homef/foo/pcaps, so all files found under /home/foo/pcailshe included, then the filter "*.cap” will be applied
to files found under /home/foo/pcaps2.

Resetting state

$ snort --pcap-dir="home/foo/pcaps --pcap-reset

The above example will read all of the files under /home/foafys, but after each pcap is read, Snort will be reset to
a post-configuration state, meaning all buffers will be fegststatistics reset, etc. For each pcap, it will be like $nor
is seeing traffic for the first time.

17

Printing the pcap
$ snort --pcap-dir=lhome/foo/pcaps --pcap-show

The above example will read all of the files under /home/foafis and will print a line indicating which pcap is
currently being read.

1.8 Tunneling Protocol Support

Snort supports decoding of GRE, IP in IP and PPTP. To enableost) an extra configuration option is necessary:
$.Jconfigure --enable-gre
To enable IPv6 support, one still needs to use the configurattion:

$./configure --enable-ipv6

1.8.1 Multiple Encapsulations

Snort will not decode more than one encapsulation. Scematioh as
Eth IPv4 GRE IPv4 GRE IPv4 TCP Payload

or
Eth IPv4 IPv6 IPv4 TCP Payload

will not be handled and will generate a decoder alert.

1.8.2 Logging

Currently, only the encapsulated part of the packet is ldggey.
Eth IP1 GRE IP2 TCP Payload

gets logged as
Eth IP2 TCP Payload

and
Eth IP1 IP2 TCP Payload

gets logged as

Eth IP2 TCP Payload

NOTE
Decoding of PPTP, which utilizes GRE and PPP, is not cuyesabported on architectures that require word
alignment such as SPARC.

18

1.9 More Information

ChaptefR contains much information about many configunadjgtions available in the configuration file. The Snort
manual page and the outputsfort -? or snort --help contain information that can help you get Snort running
in several different modes.

ANOTE

In many shells, a backslasR)(is needed to escape the ?, so you may have todyme - \? instead of
snort -? for a list of Snort command line options.

The Snort web pag®ip://www.Snort.org) and the Snort Users mailing list:
http://marc.theaimsgroup.com/?I=snort-users

at snort-users@lists.sourceforge.net provide informative announcements as well as a venue fomuamity
discussion and support. There’s a lot to Snort, so sit battkaeverage of your choosing and read the documentation
and mailing list archives.

19

http://www.snort.org
http://marc.theaimsgroup.com/?l=snort-users

Chapter 2

Configuring Snort

2.1 Includes

Theinclude keyword allows other rules files to be included within theesfile indicated on the Snort command line.
It works much like an #include from the C programming langeiagading the contents of the named file and adding
the contents in the place where the include statement appetmre file.

2.1.1 Format

include <include file path/name>

/\NOTE

| Note that there is no semicolon at the end of this line. |

Included files will substitute any predefined variable valirgo their own variable references. See SedfionP.1.2 for
more information on defining and using variables in Snomslles.

2.1.2 Variables
Three types of variables may be defined in Snort:

e var
e portvar

e ipvar

/\NOTE ,

Note 'ipvar’s are only enabled with IPv6 support. WithoBWbE support, use a regular 'var'.

These are simple substitution variables set withviltg ipvar , orportvar keywords as follows:

var RULES_PATH rules/

portvar MY_PORTS [22,80,1024:1050]

ipvar MY_NET [192.168.1.0/24,10.1.1.0/24]

alert tcp any any -> $MY_NET $MY_PORTS (flags:S; msg:"SYN pa cket")
include $RULE_PATH/example.rule

20

IP Variables and IP Lists
IPs may be specified individually, in a list, as a CIDR block.aay combination of the three. If IPv6 support is

enabled, IP variables should be specified using 'ipvareiadtof 'var’. Using 'var’ for an IP variable is still allowed
for backward compatibility, but it will be deprecated in dite release.

IPs, IP lists, and CIDR blocks may be negated with 'I". Negiais handled differently compared with Snort versions
2.7.x and earlier. Previously, each element in a list waschlly OR’ed together. IP lists now OR non-negated
elements and AND the result with the OR’ed negated elements.

The following example list will match the IP 1.1.1.1 and IBrfr 2.2.2.0 to 2.2.2.255, with the exception of IPs 2.2.2.2
and 2.2.2.3.

[1.1.1.1,2.2.2.0/24,1[2.2.2.2,2.2.2.3]]

The order of the elements in the list does not matter. The ehitrany’ can be used to match all IPs, although "lany’
is not allowed. Also, negated IP ranges that are more getfemalnon-negated IP ranges are not allowed.

See below for some valid examples if IP variables and IP. lists

ipvar EXAMPLE [1.1.1.1,2.2.2.0/24,12.2.2.2,2.2.2.3]]
alert tcp $EXAMPLE any -> any any (msg:"Example”; sid:1;)

alert tcp [1.0.0.0/8,!11.1.1.0/24] any -> any any (msg:"Exa mple";sid:2;)

The following examples demonstrate some invalid uses oflfalles and IP lists.

Use of lany:

ipvar EXAMPLE any
alert tcp !$EXAMPLE any -> any any (msg:"Example”;sid:3;)

Different use of lany:

ipvar EXAMPLE lany
alert tcp $EXAMPLE any -> any any (msg:"Example”;sid:3;)

Logical contradictions:
ipvar EXAMPLE [1.1.1.1,11.1.1.1]
Nonsensical negations:

ipvar EXAMPLE [1.1.1.0/24,11.1.0.0/16]

Port Variables and Port Lists
Portlists supports the declaration and lookup of ports &edrépresentation of lists and ranges of ports. Variables,

ranges, or lists may all be negated with '". Also, 'any’ wipecify any ports, but 'lany’ is not allowed. Valid port
ranges are from 0 to 65535.

Lists of ports must be enclosed in brackets and port ranggdapecified with a ’;’, such as in:

[10:50,888:900]

21

Port variables should be specified using 'portvar’. The usear’ to declare a port variable will be deprecated in a
future release. For backwards compatibility, a 'var’ cal be used to declare a port variable, provided the variable
name either ends withPORT’ or begins with 'PORT.

The following examples demonstrate several valid usagbsibf port variables and port lists.

portvar EXAMPLE1 80

var EXAMPLE2_PORT [80:90]

var PORT_EXAMPLE2 [1]

portvar EXAMPLE3 any

portvar EXAMPLE4 [170:90]

portvar EXAMPLE5 [80,91:95,100:200]

alert tcp any $EXAMPLEL -> any $EXAMPLE2_PORT (msg:"Exampl e"; sid:1;)
alert tcp any $PORT_EXAMPLE2 -> any any (msg:"Example"; sid '2;)

alert tcp any 90 -> any [100:1000,9999:20000] (msg:"Exampl e"; sid:3;)

Several invalid examples of port variables and port lisessdgmonstrated below:

Use of lany:

portvar EXAMPLES lany
var EXAMPLES lany

Logical contradictions:
portvar EXAMPLE6 [80,!80]
Ports out of range:
portvar EXAMPLE7 [65536]
Incorrect declaration and use of a port variable:

var EXAMPLE8 80
alert tcp any $EXAMPLE8 -> any any (msg:"Example”; sid:4;)

Port variable used as an IP:

alert tcp $EXAMPLEL any -> any any (msg:"Example”; sid:5;)

Variable Modifiers

Rule variable names can be modified in several ways. You cfmedmeta-variables using the $ operator. These can
be used with the variable modifier operat@rand- , as described in the following table:

22

Variable Syntax Description

var Defines a meta-variable.

$(var) or $var Replaces with the contents of varialvbe .

$(var:-default) Replaces the contents of the variatde with “default” if var is undefined.

$(var:?message) Replaces with the contents of variabi® or prints out the error message and
exits.

Here is an example of advanced variable usage in action:

ipvar MY_NET 192.168.1.0/24
log tcp any any -> $(MY_NET:?MY_NET is undefined!) 23

Limitations

When embedding variables, types can not be mixed. For iostquort variables can be defined in terms of other port
variables, but old-style variables (with the 'var’ keywdhn not be embedded inside a 'portvar’.

Valid embedded variable:

portvar pvarl 80
portvar pvar2 [$pvarl,90]

Invalid embedded variable:

var pvarl 80
portvar pvar2 [$pvarl,90]

Likewise, variables can not be redefined if they were preslypdefined as a different type. They should be renamed
instead:

Invalid redefinition:

var pvar 80
portvar pvar 90

2.1.3 Config

Many configuration and command line options of Snort can leeifipd in the configuration file.

Format

config <directive> [: <value>]

23

Config Directive

Description

Ding
and

SSOr

per

config alert ~ _with _interface _name Appends interface name to aleshért -|).

config alertfile: <filename> Sets the alerts output file.

config asnl: <max-nodes> Specifies the maximum number of nodes to track when dq
ASN1 decoding. See Sectibn3.3.28 for more information
examples.

config autogenerate _preprocessor If Snort was configured to enable decoder and preproce

_decoder _rules rules, this option will cause Snort to revert back to it'sgiri
nal behavior of alerting if the decoder or preprocessor gers
an event.

config bpf _file: <filename> Specifies BPF filterssfort -F).

config checksum _drop: <types> Types of packets to drop if invalid checksums. Valueane,
noip , notcp , noicmp , noudp, ip, tcp , udp, icmp or all
(only applicable in inline mode and for packets checked
checksum _mode config option).

config checksum _mode: <types> Types of packets to calculate checksums. Valwese, noip ,
notcp , noicmp , noudp, ip , tcp , udp, icmp orall .

config chroot: <dir> Chroots to specified disfort -t).

config classification: <class> See Tabl&3]2 for a list of classifications.

config daemon Forks as a daemourort -D).

config decode _data _link Decodes Layer2 headesifrt -).

config default _rule _state: <state> Global configuration directive to enable or disable the ingd

of rules into the detection engine. Default (with or withalit
rective) is enabled. Specifiisabled to disable loading rules,

24

config detection: [search-method Select type of fast pattern matcher algorithm to use.
<method>] e search-method <method>

— Queued match search methods - Matches |are
gueued until the fast pattern matcher is finished with
the payload, then evaluated. This was found to gen-
erally increase performance through fewer ca¢he
misses (evaluating each rule would generally blow
away the fast pattern matcher state in the cache).

x ac andac-q - Aho-Corasick Full (high mem;
ory, best performance).

x ac-bnfa andac-bnfa-q - Aho-Corasick Bi-
nary NFA (low memory, high performance)

x lowmem and lowmem-q - Low Memory Key-
word Trie (low memory, moderate perfor

mance)

* ac-split - Aho-Corasick Full with ANY-
ANY port group evaluated separately (low
memory, high performance). Note thjs
is shorthand for search-method ac,
split-any-any

— No queue search methods - The "nq” option spgc-
ifies that matches should not be queued and evalu-
ated as they are found.

x ac-nq - Aho-Corasick Full (high memory, bes
performance).
x ac-bnfa-nq - Aho-Corasick Binary NFA (low
memory, high performance). This is the defal
search method if none is specified.
x lowmem-ng - Low Memory Keyword Trie (low
memory, moderate performance)

—

t

— Other search methods (the above are considered su-
perior to these)

x ac-std - Aho-Corasick Standard (high mem
ory, high performance)

x acs - Aho-Corasick Sparse (high memory.
moderate performance)

x ac-banded - Aho-Corasick Banded (high
memory, moderate performance)

* ac-sparsebands - Aho-Corasick Sparsef
Banded (high memory, moderate performange)

25

config detection: [split-any-any]
[search-optimize] [max-pattern-len
<int>]

Other options that affect fast pattern matching.

e split-any-any

e search-optimize

e max-pattern-len <integer>

— A memory/performance tradeoff. By default, AN

— This is a memory optimization that specifies t
maximum length of a pattern that will be put in the

ANY port rules are added to every non ANY-AN

port group so that only one port group rule eval-
uation needs to be done per packet. Not putting

the ANY-ANY port rule group into every other po

group can significantly reduce the memory footprjnt
of the fast pattern matchers if there are many ANY-

ANY port rules. But doing so may require two poyrt

group evaluations per packet - one for the spedific

port group and one for the ANY-ANY port group,

thus potentially reducing performance. This optipn

is generic and can be used with aegrch-method
but was specifically intended for use with the

search-method where the memory footprint is sig-

nificantly reduced though overall fast pattern p
formance is better thaac-bnfa . Of note is that

the lower memory footprint can also increase pger-
formance through fewer cache misses. Default is

not to split the ANY-ANY port group.

search-method ac or ac-split by dynamically
determining the size of a state based on the t
number of states. When used witrbnfa , some
fail-state resolution will be attempted, potentia

increasing performance. Default is not to optimize.

— Optimizes fast pattern memory when used with

ptal

ly

[0

he

fast pattern matcher. Patterns longer than this length

will be truncated to this length before inserting in|
the pattern matcher. Useful when there are v
long contents being used and truncating the pat
won't diminish the uniqueness of the patterns. N

to
ery
ern
Dte

that this may cause more false positive rule evalu-

ations, i.e. rules that will be evaluated becaus

ea

fast pattern was matched, but eventually fail, hqw-
ever CPU cache can play a part in performance $0 a

smaller memory footprint of the fast pattern match
can potentially increase performance. Default ig
not set a maximum pattern length.

26

er
to

config detection:

[no _stream _inserts]

[max _queue _events <int>]
[enable-single-rule-group]
[bleedover-port-limit]

Other detection engine options.

e no_stream _inserts

— Specifies that stream inserted packets should ngt be

evaluated against the detection engine. This is a

po-

tential performance improvement with the idea that

the stream rebuilt packet will contain the payload

in the inserted one so the stream inserted packet
doesn’t need to be evaluated. Default is to inspect

stream inserts.

e Mmax_queue _events <integer>

— Specifies the maximum number of events to queue

per packet. Default is 5 events.

e enable-single-rule-group

— Putall rules into one port group. Not recommended.

Default is not to do this.
o bleedover-port-limit

— The maximum number of source or destinati
ports designated in a rule before the rule is cons
ered an ANY-ANY port group rule. Defaultis 1024

on
id-

27

config detection: [debug]
[debug-print-nocontent-rule-tests]
[debug-print-rule-group-build-details]
[debug-print-rule-groups-uncompiled]
[debug-print-rule-groups-compiled)]
[debug-print-fast-pattern]
[bleedover-warnings-enabled]

Options for detection engine debugging.

e debug

— Prints fast pattern information for a particular pg

group.

debug-print-nocontent-rule-tests

t

=

— Prints port group information during packet evalya-

tion.

debug-print-rule-group-build-details

— Prints port group information during port group

compilation.

debug-print-rule-groups-uncompiled

— Prints uncompiled port group information.

debug-print-rule-groups-compiled

— Prints compiled port group information.

debug-print-fast-pattern

— For each rule with fast pattern content, prints inf

D

=
1

mation about the content being used for the fast pat-

tern matcher.

bleedover-warnings-enabled

— Prints a warning if the number of source

olg

destination ports used in a rule exceed the

bleedover-port-limit forcing the rule to be
moved into the ANY-ANY port group.

config disable _decode _alerts

Turns off the alerts generated by the decode phase of Snor

config disable _inline _init _failopen Disables failopen thread that allows inline traffic to pass
while Snort is starting up. Only useful if Snort was
configured with —enable-inline-init-failopen. snort
--disable-inline-init-failopen)

config disable _ipopt _alerts Disables IP option length validation alerts.

config disable _tcpopt _alerts Disables option length validation alerts.

config Turns off alerts generated by experimental TCP options.

disable _tcpopt _experimental _alerts

config disable _tcpopt _obsolete _alerts

Turns off alerts generated by obsolete TCP options.

config disable _tcpopt _ttcp _alerts

Turns off alerts generated by T/TCP options.

config disable _ttcp _alerts

Turns off alerts generated by T/TCP options.

config dump _chars _only

Turns on character dumpsngrt -C).

config dump _payload

Dumps application layesfort -d).

config dump _payload _verbose

Dumps raw packet starting at link layesnfrt -X).

config enable _decode _drops

Enables the dropping of bad packets identified by decodéy (
applicable in inline mode).

O

n

config enable _decode _oversized _alerts

Enable alerting on packets that have headers containimgghe
fields for which the value is greater than the length of thekpag

28

config enable _decode _oversized _drops

Enable dropping packets that have headers containingHe
fields for which the value is greater than the length of thekpag
enable _decode _oversized _alerts must also be enabled fg
this to be effective (only applicable in inline mode).

config enable _ipopt _drops

Enables the dropping of bad packets with bad/truncated P
tions (only applicable in inline mode).

config enable _mpls _multicast

ngt

=

op

Enables support for MPLS multicast. This option is needed
when the network allows MPLS multicast traffic. When this

option is off and MPLS multicast traffic is detected, Snor W
generate an alert. By default, it is off.

config enable _mpls _overlapping

_ip

Enables support for overlapping IP addresses in an MPLS
work. In a normal situation, where there are no overlapp

IP addresses, this configuration option should not be tuomed

However, there could be situations where two private neta/d
share the same IP space and different MPLS labels are us|
differentiate traffic from the two VPNSs. In such a situatitims

configuration option should be turned on. By default, it i§ of

config enable _tcpopt _drops

Enables the dropping of bad packets with bad/truncated]
option (only applicable in inline mode).

config

enable _tcpopt _experimental _drops

Enables the dropping of bad packets with experimental TGP
tion. (only applicable in inline mode).

config enable _tcpopt _obsolete _drops

Enables the dropping of bad packets with obsolete TCP op
(only applicable in inline mode).

enable _tcpopt _ttcp _drops

Enables the dropping of bad packets with T/TCP option. (Q
applicable in inline mode).

enable _ttcp _drops

Enables the dropping of bad packets with T/TCP option. (Q
applicable in inline mode).

config event filter;

<bytes>

memcap

Set global memcap in bytes for thresholding. Default

1048576 bytes (1 megabyte).

config event _queue: [max _queue

Specifies conditions about Snort’s event queue. You carhas

net-
ing

=

ed to

rcp

op

tion

nly

S

et

<num>] [log <num>] [order _events following options:
<order>]
e maxqueue <integer > (max events supported)
e log <integer > (number of events to log)
e order _events [priority |content _length] (how to
order events within the queue)
See Sectioh Z.4.4 for more information and examples.
config flexresp2 _attempts: Specify the number of TCP reset packets to send to the squrce
<num-resets> of the attack. Valid values are 0 to 20, however values less th
4 will default to 4. The default value without this option is 4
(Snort must be compiled with —enable-flexresp?2)
config flexresp2 _interface: Specify the response interface to use. In Windows this cam jal
<iface> be the interface number. (Snort must be compiled with —exagbl
flexresp2)
config flexresp2 _memcap: <bytes> Specify the memcap for the hash table used to track the fime
of responses. The times (hashed on a socket pair plus piptpco
are used to limit sending a response to the same half of asocke
pair every couple of seconds. Default is 1048576 bytes. itSno
must be compiled with —enable-flexresp2)
config flexresp2 _rows: <num-rows> Specify the number of rows for the hash table used to track the

time of responses. Default is 1024 rows. (Snhort must be ¢

piled with —enable-flexresp2)

29

config flowbits _size; <num-hits> Specifies the maximum number of flowbit tags that can be U
within a rule set.

config ignore _ports: <proto> Specifies ports to ignore (useful for ignoring noisy NFSftcaf

<port-list> Specify the protocol (TCP, UDP, IP, or ICMP), followed by
list of ports. Port ranges are supported.

config interface: <iface> Sets the network interfacerort -i).

config ipv6 _frag:

[bsd _icmp _frag _alert on|off]

[, bad _ipv6 _frag _alert on|off]
[, frag _timeout <secs>] |,
max_frag _sessions <max-track>]

The following options can be used:

e bsd _icmp _frag _alert on|off
to alert. Default is on)

(Specify whether or no

e bad_ipv6 _frag _alert on|off
to alert. Default is on)

(Specify whether or no

e frag _timeout <integer > (Specify amount of time in
seconds to timeout first frag in hash table)

e maxfrag _sessions <integer > (Specify the numbe
of fragments to track in the hash table)

config layer2resets: <mac-addr> This option is only available when running in inline modeeS
Sectior Lb.

config logdir; <dir> Sets the logdirgnort -|).

config max _attribute _hosts: <hosts> Sets a limit on the maximum number of hosts to read fr

sed

a

pm

the attribute table. Minimum value is 32 and the maximum is

524288 (512k). The default is 10000. If the number of hg
in the attribute table exceeds this value, an error is logget!
the remainder of the hosts are ignored. This option is onpy §
ported with a Host Attribute Table (see section 2.7).

sts

S a
he

It lo

Fo

"

(0]

config max _mpls _labelchain _len: Sets a Snort-wide limit on the number of MPLS header

<num-hdrs> packet can have. Its default value is -1, which means thatt
is no limit on label chain length.

config min _ttl: <ttl> Sets a Snort-wide minimum ttl to ignore all traffic.

config mpls _payload _type: Sets a Snort-wide MPLS payload type. In addition to ipv46if

ipv4|ipvé|ethernet and ethernet are also valid options. The default MPLS paly
type is ipv4

config no _promisc Disables promiscuous mod&rt -p).

config nolog Disables logging. Note: Alerts will still occursifort -N).

config nopcre Disables pcre pattern matching.

config obfuscate Obfuscates IP Addressesi¢rt -O).

config order: <order> Changes the order that rules are evaluated, eg: pass ale
activation.

config pcre _match _limit: Restricts the amount of backtracking a given PCRE option.

<integer > example, it will limit the number of nested repeats withinad-p
tern. A value of -1 allows for unlimited PCRE, up to the PCH
library compiled limit (around 10 million). A value of O relis
in no PCRE evaluation. The snort default value is 1500.

config pcre _match _limit _recursion: Restricts the amount of stack used by a given PCRE option.

<integer > value of -1 allows for unlimited PCRE, up to the PCRE libra
compiled limit (around 10 million). A value of O results in n
PCRE evaluation. The snort default value is 1500. This op
is only useful if the value is less than there _match _limit

config pkt _count: <N> Exits after N packetssgort -n).

30

config policy _version: Supply versioning information to configuration files. Bagg-V

<base-version-string > sion should be a string in all configuration files including in
[<binding-version-string >] cluded ones. In addition, binding version must be in any file
configured withconfig binding . This option is used to avoid

race conditions when modifying and loading a configuration
within a short time span - before Snort has had a chance to load
a previous configuration.

config profile _preprocs Print statistics on preprocessor performance. See SdZinh
for more details.

config profile _rules Print statistics on rule performance. See Sedilon P.5. infane
details.

config quiet Disables banner and status repost®(t -q).

config read _bin _file: <pcap> Specifies a pcap file to use (instead of reading from netwark),
same effect as «tf> option.

config reference: <ref> Adds a new reference system to Snort, eg: myref
http://myurl.com/?id=

config reference _net <cidr> For IP obfuscation, the obfuscated net will be used if th&kpac

contains an IP address in the reference net. Also used to de-
termine how to set up the logging directory structure for the
session post detection rule option and ascii output plugin - an
attempt is made to name the log directories after the IP addre
that is not in the reference net.

config set _gid: <gid> Changes GID to specified GIBrort -g).

set _uid: <uid> Sets UID to<id> (snort -u).

config show _year Shows year in timestampsnprt -y).

config snaplen: <bytes> Set the snaplength of packet, same effecPas<snaplen > or
--snaplen <snaplen > options.

config stateful Sets assurance mode for stream (stream is established).

config tagged _packet _limit: When a metric other thapackets is used in a tag option i

<max-tag> a rule, this option sets the maximum number of packets t¢ be

tagged regardless of the amount defined by the other metric.
See Sectiol 3.7.5 on using the tag option when writing rules
for more details. The default value when this option is nat-cp
figured is 256 packets. Setting this option to a value of O will
disable the packet limit.
config threshold: memcap <bytes> Set global memcap in bytes for thresholding. Default| is

1048576 bytes (1 megabyte). (This is deprecated. Use config
eventfilter instead.)
config timestats _interval; <secs> Set the amount of time in seconds between logging time stats.
Default is 3600 (1 hour). Note this option is only availaldie i
Snort was built to use time stats witlenable-timestats

config umask: <umask> Sets umask when runningnprt -m).
config utc Uses UTC instead of local time for timestampsoft -U).
config verbose Uses verbose logging to STDOU3nrt -v).

2.2 Preprocessors

Preprocessors were introduced in version 1.5 of Snort. @Hew the functionality of Snort to be extended by allowing
users and programmers to drop modular plugins into Snatyfeasily. Preprocessor code is run before the detection
engine is called, but after the packet has been decoded. adkefpcan be modified or analyzed in an out-of-band
manner using this mechanism.

Preprocessors are loaded and configured usingrépeocessor keyword. The format of the preprocessor directive
in the Snort rules file is:

31

preprocessor <name>: <options>

2.2.1 Frag3

The frag3 preprocessor is a target-based IP defragmentatalule for Snort. Frag3 is intended as a replacement for
the frag2 defragmentation module and was designed withall@xfing goals:

1. Faster execution than frag2 with less complex data manageme

2. Target-based host modeling anti-evasion techniques.

The frag2 preprocessor used splay trees extensively foagiag the data structures associated with defragmenting
packets. Splay trees are excellent data structures to use ydu have some assurance of locality of reference for the
data that you are handling but in high speed, heavily frageteanvironments the nature of the splay trees worked
against the system and actually hindered performance 3rrags the sfxhash data structure and linked lists for data
handling internally which allows it to have much more préedide and deterministic performance in any environment
which should aid us in managing heavily fragmented envirents.

Target-based analysis is a relatively new concept in ndtased intrusion detection. The idea of a target-based
system is to model the actual targets on the network instéatkbrely modeling the protocols and looking for attacks

within them. When IP stacks are written for different opargtsystems, they are usually implemented by people
who read the RFCs and then write their interpretation of whatRFC outlines into code. Unfortunately, there are

ambiguities in the way that the RFCs define some of the edgditimms that may occur and when this happens

different people implement certain aspects of their IPldatifferently. For an IDS this is a big problem.

In an environment where the attacker can determine whag tfylP defragmentation is being used on a partic-
ular target, the attacker can try to fragment packets suahttte target will put them back together in a specific
manner while any passive systems trying to model the hoffictfzave to guess which way the target OS is going
to handle the overlaps and retransmits. As | like to say, éf dftacker has more information about the targets on
a network than the IDS does, it is possible to evade the ID% iBhwhere the idea for “target-based IDS” came
from. For more detail on this issue and how it affects IDS,atheut the famous Ptacek & Newsham paper at
http://www.snort.org/docs/idspaper/

The basic idea behind target-based IDS is that we tell theififimation about hosts on the network so that it can
avoid Ptacek & Newsham style evasion attacks based on iattwmabout how an individual target IP stack operates.
Vern Paxson and Umesh Shankar did a great paper on this y@oita2003 that detailed mapping the hosts on a net-
work and determining how their various IP stack implemeatethandled the types of problems seen in IP defragmen-
tation and TCP stream reassembly. Check it olttat/www.ICir.org/vern/papers/activemap-0ak03.pdf

We can also present the IDS with topology information to dviol L-based evasions and a variety of other issues, but
that’s a topic for another day. Once we have this informatiercan start to really change the game for these complex
modeling problems.

Frag3 was implemented to showcase and prototype a targetilmaodule within Snort to test this idea.

Frag 3 Configuration

Frag3 configuration is somewhat more complex than frag2.r&'hee at least two preprocessor directives required
to activate frag3, a global configuration directive and agie@ instantiation. There can be an arbitrary number of
engines defined at startup with their own configuration, Ioly one global configuration.

Global Configuration

e Preprocessor naméag3 _global

e Available options: NOTE: Global configuration options acerma separated.

— maxfrags <number > - Maximum simultaneous fragments to track. Default is 8192.
— memcap <bytes > - Memory cap for self preservation. Default is 4MB.

32

http://www.snort.org/docs/idspaper/
http://www.icir.org/vern/papers/activemap-oak03.pdf

— prealloc _frags <number > - Alternate memory management mode. Use preallocated fagrmodes
(faster in some situations).

— disabled - Option to turn off the preprocessor. By default this opt®turned off. When the preprocessor
is disabled only the options memcap, prealloemcap, and preallaitags are applied when specified with
the configuration.

Engine Configuration

e Preprocessor naméag3 _engine

¢ Available options: NOTE: Engine configuration options grace separated.

— timeout <seconds > - Timeout for fragments. Fragments in the engine for lonbantthis period will
be automatically dropped. Default is 60 seconds.

— min_ttl <value > - Minimum acceptable TTL value for a fragment packet. Deffal .
— detect _anomalies - Detect fragment anomalies.

— bind to <ip _list > -IP Listto bind this engine to. This engine will only run faagkets with destination
addresses contained within the IP List. Default valualis.

— overlap _limit <number> - Limits the number of overlapping fragments per packet. @eéault is
"0” (unlimited), the minimum is "0”, and the maximum is "255"This is an optional parameter. de-
tectanomalies option must be configured for this option to takecef

— min _fragment _length <number> - Defines smallest fragment size (payload size) that shoailcbinsid-
ered valid. Fragments smaller than or equal to this limitamesidered malicious and an event s raised, if
detectanomalies is also configured. The default is "0” (unlimitetl minimum is "0”, and the maximum
is "255". This is an optional parameter. detectomalies option must be configured for this option to take
effect.

— policy <type > - Select a target-based defragmentation mode. Availalplestare first, last, bsd, bsd-
right, linux. Default type is bsd.

The Paxson Active Mapping paper introduced the terminofeayy3 is using to describe policy types. The
known mappings are as follows. Anyone who develops more mgpm@and would like to add to this list
please feel free to send us an email!

33

Platform | Type |

AlX 2 BSD
AlX4.38.9.3 BSD
Cisco 10S Last
FreeBSD BSD
HP JetDirect (printer) BSD-right
HP-UX B.10.20 BSD
HP-UX 11.00 First
IRIX 4.0.5F BSD
IRIX 6.2 BSD
IRIX 6.3 BSD
IRIX64 6.4 BSD
Linux 2.2.10 linux
Linux 2.2.14-5.0 linux
Linux 2.2.16-3 linux
Linux 2.2.19-6.2.10smp linux
Linux 2.4.7-10 linux
Linux 2.4.9-31SGI 1.0.2smp linux
Linux 2.4 (RedHat 7.1-7.3) linux
MacOS (version unknown) First
NCD Thin Clients BSD
OpenBSD (version unknown) | linux
OpenBSD (version unknown) | linux
OpenVMS 7.1 BSD
0S/2 (version unknown) BSD
OSF1V3.0 BSD
OSF1V3.2 BSD
OSF1V4.0,5.0,5.1 BSD
Sun0S4.1.4 BSD
Sun0S5.5.1,5.6,5.7,5.8 First
Tru64 Unix V5.0A,V5.1 BSD
Vax/VMS BSD
Windows (95/98/NT4/W2K/XP) First

Format
Note in the advanced configuration below that there are thngines specified running wittinux, first — andlast
policies assigned. The first two engines are bound to spéPBifaxidress ranges and the last one applies to all other

traffic. Packets that don't fall within the address requiests of the first two engines automatically fall through te th
third one.

Basic Configuration

preprocessor frag3_global
preprocessor frag3_engine

Advanced Configuration

preprocessor frag3_global: prealloc_nodes 8192

preprocessor frag3_engine: policy linux, bind_to 192.168 .1.0/24
preprocessor frag3_engine: policy first, bind_to [10.1.4 7.0/24,172.16.8.0/24]
preprocessor frag3_engine: policy last, detect anomalie S

34

Frag 3 Alert Output

Frag3 is capable of detecting eight different types of ari@salts event output is packet-based so it will work with
all output modes of Snort. Read the documentation irdtesignatures directory with filenames that begin with
“123-" for information on the different event types.

2.2.2 Stream5

The Stream5 preprocessor is a target-based TCP reassembiyiarfor Snort. It is capable of tracking sessions for
both TCP and UDP. With Stream5, the rule 'flow’ and 'flowbitgykwvords are usable with TCP as well as UDP traffic.

Transport Protocols

TCP sessions are identified via the classic TCP "connectidBP sessions are established as the result of a series of
UDP packets from two end points via the same set of ports. |@GMBsages are tracked for the purposes of checking
for unreachable and service unavailable messages, wHattieély terminate a TCP or UDP session.

Target-Based

Streamb, like Frag3, introduces target-based actionsdndling of overlapping data and other TCP anomalies. The
methods for handling overlapping data, TCP Timestampsa DatSYN, FIN and Reset sequence numbers, etc. and
the policies supported by Stream5 are the results of extemssearch with many target operating systems.

Stream API

Streamb fully supports the Stream API, other protocol ndizees/preprocessors to dynamically configure reassembly
behavior as required by the application layer protocolniidg sessions that may be ignored (large data transfer}, et
and update the identifying information about the sessippl{eation protocol, direction, etc) that can later be usgd
rules.

Anomaly Detection

TCP protocol anomalies, such as data on SYN packets, da&edomutside the TCP window, etc are configured via
thedetect _anomalies option to the TCP configuration. Some of these anomaliesetected on a per-target basis.
For example, a few operating systems allow data in TCP SYMetacwhile others do not.

Stream5 Global Configuration

Global settings for the Stream5 preprocessor.

preprocessor stream5_global; \
[track tcp <yes|no>], [max_tcp <number>], \
[memcap <number bytes>], \
[track_udp <yes|no>], [max_udp <number>], \
[track_icmp <yes|no>], [max_icmp <number>], \
[flush_on_alert], [show_rebuilt_packets], \
[prune_log_max <bytes>], [disabled]

35

Option

Description

track _tcp <yes|no>

Track sessions for TCP. The default is "yes”.

max.tcp <num sessions>

Maximum simultaneous TCP sessions tracked. The defauR56000", maxi-
mum is "1052672”, minimum is "1".

memcap <num bytes>

Memcap for TCP packet storage. The default is "8388608” (3MiBaximum is
"1073741824” (1GB), minimum is "32768" (32KB).

track _udp <yes|no>

Track sessions for UDP. The default is "yes”.

max_.udp <num sessions>

Maximum simultaneous UDP sessions tracked. The default28000”, maxi-
mum is "1052672”, minimum is "1".

track _icmp <yes|no>

Track sessions for ICMP. The default is "yes”.

max_icmp <num sessions>

Maximum simultaneous ICMP sessions tracked. The defatit4600”, maxi-
mum is "1052672”, minimum is "1".

t

disabled Option to disble the stream5 tracking. By default this opi®turned off. When
the preprocessor is disabled only the options memcap, te@xmaxudp and
max.icmp are applied when specified with the configuration.

flush _on_alert Backwards compatibility. Flush a TCP stream when an alegeizerated on tha
stream. The default is set to off.

show_rebuilt _packets Print/display packet after rebuilt (for debugging). Théaldt is set to off.

prune _log _max <num bytes>

Print a message when a session terminates that was consumiggthan the
specified number of bytes. The default is "1048576” (1MB)nimum is "0”
(unlimited), maximum is not bounded, other than by the mgmca

Stream5 TCP Configuration

Provides a means on a per IP address target to configure T@R.pbhis can have multiple occurrences, per policy
that is bound to an IP address or network. One default poliggtroe specified, and that policy is not bound to an IP

address or network.

preprocessor stream5_tcp: \

[bind_to <ip_addr>], \

[timeout <number secs>], [policy <policy id>], \
[overlap_limit <number>], [max_window <number>], \
[require_3whs [<number secs>]], [detect anomalies], \

[check_session_hijacking], [use_static_footprint_siz es], \
[dont_store_large packets], [dont reassemble_async], \
[max_queued_bytes <bytes>], [max_queued_segs <number se gs>], \

[ports <client|server|both> <alljnumber [number]*>], \

[ignore_any_rules]

Option

Description

bind _to <ip _addr>

IP address or network for this policy. The default is set tp. an

timeout <num seconds>

Session timeout. The default is 30", the minimum is "1, ahd maxi-
mum is "86400” (approximately 1 day).

36

policy <policy _id>

The Operating System policy for the target OS. The palitgan be one
of the following:

Policy Name| Operating Systems.

first Favor first overlapped segment.

last Favor first overlapped segment.

bsd FresBSD 4.x and newer, NetBSD 2.x and
newer, OpenBSD 3.x and newer

linux Linux 2.4 and newer

old-linux Linux 2.2 and earlier

windows Windows 2000, Windows XP, Windows
95/98/ME

win2003 Windows 2003 Server

vista Windows Vista

solaris Solaris 9.x and newer

hpux HPUX 11 and newer

hpux10 HPUX 10

irix IRIX 6 and newer

macos MacOS 10.3 and newer

overlap _limit <number>

Limits the number of overlapping packets per session. Tlfeultas "0”
(unlimited), the minimum is "0”, and the maximum is "255".

max_window <number>

Maximum TCP window allowed. The default is "0” (unlimitedhe
minimum is "0”, and the maximum is "1073725440" (65535 leffiifs
14). That is the highest possible TCP window per RFCs. Thi®ojs
intended to preventa DoS against Stream5 by an attackey asiabnor-
mally large window, so using a value near the maximum is disaged.

require _3whs [<number
seconds>]

Establish sessions only on completion of a SYN/SYN-ACK/A#hd-
shake. The default is set to off. The optional number of sds@peci-
fies a startup timeout. This allows a grace period for exgstiessions tq
be considered established during that interval immediatier Snort is
started. The default is "0” (don’t consider existing seasiestablished)
the minimum is "0”, and the maximum is "86400" (approximatdl
day).

detect _anomalies

Detect and alert on TCP protocol anomalies. The defaulttisosaf.

check _session _hijacking

Check for TCP session hijacking. This check validates theivaare
(MAC) address from both sides of the connect — as establisheithe
3-way handshake against subsequent packets received sessien. If
an ethernet layer is not part of the protocol stack receiwe8rwort, there
are no checks performed. Alerts are generated (mtect _anomalies ’
option) for either the client or server when the MAC addresshe side
or the other does not match. The default is set to off.

use _static _footprint _sizes

Use static values for determining when to build a reassedniideket to
allow for repeatable tests. This option should not be usedlypstion
environments. The default is set to off.

dont _store _large _packets

Performance improvement to not queue large packets in epdsy
buffer. The default is set to off. Using this option may résalmissed
attacks.

dont _reassemble _async

Don't queue packets for reassembly if traffic has not been seéoth
directions. The default is set to queue packets.

max_queued _bytes <bytes>

Limit the number of bytes queued for reassembly on a given 3&Bion
to bytes. Default is "1048576” (LMB). A value of "0” means imited,
with a non-zero minimum of "1024”, and a maximum of "10737243
(1GB). A message is written to console/syslog when thistlisiien-
forced.

37

max_queued _segs <num>

Limit the number of segments queued for reassembly on a giveR
session. The default is "2621", derived based on an aveiage§400
bytes. A value of "0” means unlimited, with a non-zero minimuwf
"2", and a maximum of "1073741824" (1GB). A message is writte
console/syslog when this limit is enforced.

ports <client|server|both>
<alljnumber(s)>

Specify the client, server, or both and list of ports in whtohperform
reassembly. This can appear more than once in a given cortirg dé-
fault settings areports client 21 23 25 42 53 80 110 111 135

136 137 139 143 445 513 514 1433 1521 2401 3306 . The mini-
mum port allowed is "1” and the maximum allowed is "65535".

ignore _any _rules

payload if there are no port specific rules for the src or desibn port.

Rules that have flow or flowbits will never be ignored. This igeafor-

mance improvement and may result in missed attacks. Usiaglties
not affect rules that look at protocol headers, only thosk wontent,
PCRE, or byte test options. The default is "off”. This optiman be used
only in default policy.

ANOTE

If no options are specified for a given TCP policy, that is tleéadIt TCP policy. If only a bindo option is
used with no other options that TCP policy uses all of the ulefalues.

Stream5 UDP Configuration

Don't process any> any (ports) rules for TCP that attempt to match

Configuration for UDP session tracking. Since there is ngebased binding, there should be only one occurrence

of the UDP configuration.

preprocessor stream5_udp: [timeout <number secs>], [igno re_any_rules]

Option

Description

timeout <num seconds>

Session timeout. The default is "30”, the minimum is "1”, atheé maximum is
"86400" (approximately 1 day).

ignore _any _rules

Don't process any> any (ports) rules for UDP that attempt to match payld
if there are no port specific rules for the src or destinatiort.pRules that have
flow or flowbits will never be ignored. This is a performancepimvement and
may result in missed attacks. Using this does not affecsithlat look at protoco
headers, only those with content, PCRE, or byte test optibims default is "off".

ANOTE

With the ignoreany.rules option, a UDP rule will be ignored except when therenigther port specific rulg
that may be applied to the traffic. For example, if a UDP rulecsiies destination port 53, the 'ignored’ any
-> any rule will be applied to traffic to/from port 53, but NOT tayaother source or destination port. A lis
of rule SIDs affected by this option are printed at Snortstsip.

ANOTE

With the ignoreany.rules option, if a UDP rule that uses afy any ports includes either flow or flowbits
the ignoreany.rules option is effectively pointless. Because of the ptig¢éimpact of disabling a flowbitg
rule, the ignoreany.rules option will be disabled in this case.

38

ad

Stream5 ICMP Configuration

Configuration for ICMP session tracking. Since there is mgetbased binding, there should be only one occurrence
of the ICMP configuration.

NOTE

ICMP is currently untested, in minimal code form and is NO@d for use in production networks. It is npt
turned on by default.

preprocessor stream5_icmp: [timeout <number secs>]

Option

Description

timeout

<num seconds> Session timeout. The default is ”30”, the minimum is 1", ah& maximum is
"86400” (approximately 1 day).

Example Configurations

1. This example configuration is the default configuratiorsiort.conf and can be used for repeatable tests of
stream reassembly in readback mode.

preprocessor stream5_global: \
max_tcp 8192, track tcp yes, track udp yes, track icmp no

preprocessor stream5_tcp: \
policy first, use_static_footprint_sizes

preprocessor stream5_udp: \
ignore_any_rules

2. This configuration maps two network segments to diffef@8tpolicies, one for Windows and one for Linux,

with

Alerts

all other traffic going to the default policy of Solaris.

preprocessor stream5_global: track_tcp yes

preprocessor stream5_tcp: bind_to 192.168.1.0/24, polic y windows
preprocessor stream5_tcp: bind_to 10.1.1.0/24, policy |i nux
preprocessor stream5_tcp: policy solaris

Stream5 uses generator ID 129. It is capable of alerting aigh{) anomalies, all of which relate to TCP anomalies.

There are

no anomalies detected relating to UDP or ICMP.

The list of SIDs is as follows:

© N o g A~ w NP

SYN on established session

Data on SYN packet

Data sent on stream not accepting data

TCP Timestamp is outside of PAWS window

Bad segment, overlap adjusted size less than/equal 0
Window size (after scaling) larger than policy allows
Limit on number of overlapping TCP packets reached

Data after Reset packet

39

2.2.3 sfPortscan

The sfPortscan module, developed by Sourcefire, is desimnddtect the first phase in a network attack: Recon-
naissance. In the Reconnaissance phase, an attacker idetemmnat types of network protocols or services a host
supports. This is the traditional place where a portscaps@kace. This phase assumes the attacking host has no prior
knowledge of what protocols or services are supported byafiet; otherwise, this phase would not be necessary.

As the attacker has no beforehand knowledge of its interatget, most queries sent by the attacker will be negative
(meaning that the service ports are closed). In the natutegittmate network communications, negative responses
from hosts are rare, and rarer still are multiple negatigpomses within a given amount of time. Our primary objective
in detecting portscans is to detect and track these negatp®nses.

One of the most common portscanning tools in use today is NMagap encompasses many, if not all, of the current
portscanning techniques. sfPortscan was designed to béatitect the different types of scans Nmap can produce.

sfPortscan will currently alert for the following types ofiNap scans:

e TCP Portscan
e UDP Portscan
e |P Portscan

These alerts are for oreone portscans, which are the traditional types of scans;hose scans multiple ports on
another host. Most of the port queries will be negative,simost hosts have relatively few services available.

sfPortscan also alerts for the following types of decoy geahs:

e TCP Decoy Portscan
e UDP Decoy Portscan
e |IP Decoy Portscan

Decoy portscans are much like the Nmap portscans descrifmmeaonly the attacker has a spoofed source address
inter-mixed with the real scanning address. This tactipfiéide the true identity of the attacker.

sfPortscan alerts for the following types of distributedtpoans:

e TCP Distributed Portscan
e UDP Distributed Portscan

e |P Distributed Portscan

These are manyone portscans. Distributed portscans occur when multipttshquery one host for open services.
This is used to evade an IDS and obfuscate command and chostsl.

ANOTE

Negative queries will be distributed among scanning hastsye track this type of scan through the scanned
host.

sfPortscan alerts for the following types of portsweeps:

e TCP Portsweep
e UDP Portsweep

e |IP Portsweep

40

e ICMP Portsweep

These alerts are for oremany portsweeps. One host scans a single port on multipte.nfsis usually occurs when
a new exploit comes out and the attacker is looking for a $igesgrvice.

ANOTE

The characteristics of a portsweep scan may not result iymegative responses. For example, if an attacker
portsweeps a web farm for port 80, we will most likely not seenynnegative responses.

sfPortscan alerts on the following filtered portscans antspa@eps:

e TCP Filtered Portscan

e UDP Filtered Portscan

e |P Filtered Portscan

e TCP Filtered Decoy Portscan

e UDP Filtered Decoy Portscan

¢ |P Filtered Decoy Portscan

e TCP Filtered Portsweep

e UDP Filtered Portsweep

¢ |P Filtered Portsweep

e ICMP Filtered Portsweep

e TCP Filtered Distributed Portscan

e UDP Filtered Distributed Portscan

¢ |P Filtered Distributed Portscan
“Filtered” alerts indicate that there were no network esrfCMP unreachables or TCP RSTSs) or responses on closed
ports have been suppressed. It's also a good indicator athehthe alert is just a very active legitimate host. Active

hosts, such as NATSs, can trigger these alerts because thesend out many connection attempts within a very small
amount of time. A filtered alert may go off before responseaifthe remote hosts are received.

sfPortscan only generates one alert for each host pair istigmeduring the time window (more on windows below).
On TCP scan alerts, sfPortscan will also display any opetspbat were scanned. On TCP sweep alerts however,
sfPortscan will only track open ports after the alert haslteiggered. Open port events are not individual alerts, but
tags based on the original scan alert.

sfPortscan Configuration

Use of the Stream5 preprocessor is required for sfPort<gmeam gives portscan direction in the case of connection-
less protocols like ICMP and UDP. You should enable the &trpeeprocessor in younort.conf , as described in

SectiofZZP.

The parameters you can use to configure the portscan module ar

1. proto <protocol>
Available options:

e TCP

41

10.

e UDP

e IGMP
ip _proto
e all

scantype <scantype>
Available options:

portscan

portsweep

decoy _portscan
distributed _portscan
e all

sensdevel <level>
Available options:

e low - “Low” alerts are only generated on error packets sent frobeitarget host, and because of the nature
of error responses, this setting should see very few fals#ipes. However, this setting will never trigger
a Filtered Scan alert because of a lack of error responsés sétting is based on a static time window of
60 seconds, afterwhich this window is reset.

e medium - “Medium” alerts track connection counts, and so will gexterfiltered scan alerts. This setting
may false positive on active hosts (NATSs, proxies, DNS cachte), so the user may need to deploy the
use of Ignore directives to properly tune this directive.

e high - “High” alerts continuously track hosts on a network usingjrae window to evaluate portscan
statistics for that host. A "High” setting will catch somewl scans because of the continuous monitoring,
but is very sensitive to active hosts. This most definitelly rgiquire the user to tune sfPortscan.

watch.ip <ipl|ip2/cidr[[port |port2-port3]] >

Defines which IPs, networks, and specific ports on those hostatch. The list is a comma separated list of
IP addresses, IP address using CIDR notation. Optionaitys pre specified after the IP address/CIDR using a
space and can be either a single port or a range denoted b alBar networks not falling into this range are
ignored if this option is used.

ignore scanners<ipl|ip2/cidr[[port |port2-port3]] >

Ignores the source of scan alerts. The parameter is the samatfas that ofvatch _ip .

ignore scanned<ipl|ip2/cidr[[port |port2-port3]] >
Ignores the destination of scan alerts. The parameter isaitme format as that efatch _ip .

logfile <file>

This option will output portscan events to the file specififdfile does not contain a leading slash, this file
will be placed in the Snort config dir.

include.midstream

This option will include sessions picked up in midstream lne&m5. This can lead to false alerts, especially
under heavy load with dropped packets; which is why the opsmff by default.

detectack_scans

This option will include sessions picked up in midstream lbg stream module, which is necessary to detect
ACK scans. However, this can lead to false alerts, espgaiallier heavy load with dropped packets; which is
why the option is off by default.

disabled

This optional keyword is allowed with any policy to avoid patprocessing. This option disables the preproces-
sor. When the preprocessor is disabled only the memcaproigtapplied when specified with the configuration.
The other options are parsed but not used. Any valid configuranay have "disabled” added to it.

42

Format

preprocessor sfportscan: proto <protocols> \
scan_type <portscan|portsweep|decoy_portscan|distrib uted_portscanjall> \
sense_level <low|medium|high> \
watch_ip <IP or IP/CIDR> \
ignore_scanners <IP list> \
ignore_scanned <IP list> \
logfile <path and filename> \
disabled

Example

preprocessor flow: stats_interval 0 hash 2
preprocessor sfportscan:\

proto { all }\

scan_type { all } \

sense_level { low }

sfPortscan Alert Output

Unified Output In order to get all the portscan information logged with therta snort generates a pseudo-packet
and uses the payload portion to store the additional porisdarmation of priority count, connection count, IP count
port count, IP range, and port range. The characteristitiseopacket are:

Src/Dst MAC Addr == MACDAD
IP Protocol == 255
IP TTL ==

Other than that, the packet looks like the IP portion of thekpathat caused the portscan alert to be generated. This
includes any IP options, etc. The payload and payload sizheopacket are equal to the length of the additional
portscan information that is logged. The size tends to beratd 00 - 200 bytes.

Open port alerts differ from the other portscan alerts, beeapen port alerts utilize the tagged packet output system
This means that if an output system that doesn't print taggettets is used, then the user won’t see open port alerts.
The open port information is stored in the IP payload anda&iostthe port that is open.

The sfPortscan alert output was designed to work with ungigezket logging, so it is possible to extend favorite Snort
GUIs to display portscan alerts and the additional infoforain the IP payload using the above packet characteristics

Log File Output Log file output is displayed in the following format, and eaipoled further below:

Time: 09/08-15:07:31.603880

event id: 2

192.168.169.3 -> 192.168.169.5 (portscan) TCP Filtered Po rtscan
Priority Count: 0

Connection Count: 200

IP Count: 2

Scanner IP Range: 192.168.169.3:192.168.169.4

Port/Proto Count: 200

Port/Proto Range: 20:47557

If there are open ports on the target, one or more additiagajed packet(s) will be appended:

43

Time: 09/08-15:07:31.603881

event_ref: 2

192.168.169.3 -> 192.168.169.5 (portscan) Open Port
Open Port: 38458

1. Eventid/Event_ref
These fields are used to link an alert with the correspondpey Port tagged packet

2. Priority Count

Priority Count keeps track of bad responses (resets, unreachables). ghner e priority count, the more
bad responses have been received.

3. Connection Count

Connection Count lists how many connections are active on the hosts (src Qr dbhis is accurate for
connection-based protocols, and is more of an estimatetf@mre® Whether or not a portscan was filtered is
determined here. High connection count and low priorityrdomnould indicate filtered (no response received
from target).

4. |P Count

IP Count keeps track of the last IP to contact a host, andnimengs the count if the next IP is different. For
one-to-one scans, this is a low number. For active hoststimsber will be high regardless, and one-to-one
scans may appear as a distributed scan.

5. Scanned/Scanner IP Range

This field changes depending on the type of alert. Portswemg-{0-many) scans display the scanned IP range;
Portscans (one-to-one) display the scanner IP.

6. Port Count

Port Count keeps track of the last port contacted and inangsribis number when that changes. We use this
count (along with IP Count) to determine the difference lstwone-to-one portscans and one-to-one decoys.

Tuning sfPortscan

The most important aspect in detecting portscans is tumiagletection engine for your network(s). Here are some
tuning tips:

1. Use the watchip, ignore_scanners, and ignorescanned options.

It's important to correctly set these options. Twech _ip option is easy to understand. The analyst should set
this option to the list of Cidr blocks and IPs that they wanivtch. If nowatch _ip is defined, sfPortscan will
watch all network traffic.

Theignore _scanners andignore _scanned options come into play in weeding out legitimate hosts that a
very active on your network. Some of the most common exangrieNAT IPs, DNS cache servers, syslog
servers, and nfs servers. sfPortscan may not generatefadeiéves for these types of hosts, but be aware when
first tuning sfPortscan for these IPs. Depending on the typ&ea that the host generates, the analyst will know
which to ignore it as. If the host is generating portsweemesjghen add it to th@gnore _scanners option.

If the host is generating portscan alerts (and is the hostighaeing scanned), add it to thgmore _scanned
option.

2. Filtered scan alerts are much more prone to false positive

When determining false positives, the alert type is veryantgnt. Most of the false positives that sfPortscan
may generate are of the filtered scan alert type. So be mucé suspicious of filtered portscans. Many times
this just indicates that a host was very active during the firariod in question. If the host continually generates
these types of alerts, add it to tlyaore _scanners list or use a lower sensitivity level.

44

3. Make use of the Priority Count, Connection Count, IP Count Port Count, IP Range, and Port Range to
determine false positives.

The portscan alert details are vital in determining the sauffa portscan and also the confidence of the portscan.
In the future, we hope to automate much of this analysis ilgasg) a scope level and confidence level, but
for now the user must manually do this. The easiest way toriohirte false positives is through simple ratio
estimations. The following is a list of ratios to estimateldine associated values that indicate a legitimate scan
and not a false positive.

Connection Count / IP Count: This ratio indicates an estimated average of connectionEp€&or portscans,
this ratio should be high, the higher the better. For poregegethis ratio should be low.

Port Count/IP Count: Thisratio indicates an estimated average of ports condéateer IP. For portscans, this
ratio should be high and indicates that the scanned host's were connected to by fewer IPs. For portsweeps,
this ratio should be low, indicating that the scanning hosinected to few ports but on many hosts.

Connection Count / Port Count: This ratio indicates an estimated average of connectionppe. For
portscans, this ratio should be low. This indicates thaheannection was to a different port. For portsweeps,
this ratio should be high. This indicates that there wereywamnections to the same port.

The reason tha@riority Count is not included, is because the priority count is includethie connection
count and the above comparisons take that into considarafibe Priority Count play an important role in
tuning because the higher the priority count the more likiely a real portscan or portsweep (unless the host is
firewalled).

4. If all else fails, lower the sensitivity level.

If none of these other tuning techniques work or the analgesd't have the time for tuning, lower the sensitivity
level. You get the best protection the higher the sensjtleitel, but it's also important that the portscan detection
engine generate alerts that the analyst will find informeativhe low sensitivity level only generates alerts based
on error responses. These responses indicate a portscémeaalérts generated by the low sensitivity level are
highly accurate and require the least tuning. The low siitgitevel does not catch filtered scans; since these
are more prone to false positives.

2.2.4 RPC Decode

The rpcdecode preprocessor normalizes RPC multiple fragmentedds into a single un-fragmented record. It does
this by normalizing the packet into the packet buffer. Iesim5 is enabled, it will only process client-side traffic. By
default, it runs against traffic on ports 111 and 32771.

Format

preprocessor rpc_decode: \
<ports> [alert fragments] \
[no_alert_multiple_requests] \
[no_alert_large_fragments] \
[no_alert_incomplete]

Option Description

alert _fragments Alert on any fragmented RPC record.

no_alert _multiple _requests Don't alert when there are multiple records in one packet.

no_alert _large _fragments Don't alert when the sum of fragmented records exceeds otlepa
no_alert _incomplete Don’t alert when a single fragment record exceeds the sipmefpacket.

45

2.2.5 Performance Monitor

This preprocessor measures Snort’s real-time and theatatiaximum performance. Whenever this preprocessor is
turned on, it should have an output mode enabled, eitherstaei which prints statistics to the console window or
“file” with a file name, where statistics get printed to the @fied file name. By default, Snort’s real-time statistics
are processed. This includes:

e Time Stamp

e Drop Rate

e Mbits/Sec (wire) [duplicated below for easy comparisortwather rates]

e Alerts/Sec

e K-Pkts/Sec (wire) [duplicated below for easy comparisothwither rates]

e Avg Bytes/Pkt (wire) [duplicated below for easy comparisath other rates]

e Pat-Matched [percent of data received that Snort procésgegtern matching]

e Syns/Sec

e SynAcks/Sec

e New Sessions Cached/Sec

e Sessions Del fr Cache/Sec

e Current Cached Sessions

e Max Cached Sessions

e Stream Flushes/Sec

e Stream Session Cache Faults

e Stream Session Cache Timeouts

e New Frag Trackers/Sec

e Frag-Completes/Sec

e Frag-Inserts/Sec

e Frag-Deletes/Sec

e Frag-Auto Deletes/Sec [memory DoS protection]

e Frag-Flushes/Sec

e Frag-Current [number of current Frag Trackers]

e Frag-Max [max number of Frag Trackers at any time]

e Frag-Timeouts

e Frag-Faults

e Number of CPUs [*** Only if compiled with LINUXSMP *** the next three appear for each CPU]

e CPU usage (user)

e CPU usage (sys)

e CPU usage (Idle)

46

Mbits/Sec (wire) [average mbits of total traffic]

Mbits/Sec (ipfrag) [average mbits of IP fragmented traffic]
Mbits/Sec (ipreass) [average mbits Snort injects afteeizsembly]
Mbits/Sec (tcprebuilt) [average mbits Snort injects aft@P reassembly]
Mbits/Sec (applayer) [average mbits seen by rules and pobtiecoders]
Avg Bytes/Pkt (wire)

Avg Bytes/Pkt (ipfrag)

Avg Bytes/Pkt (ipreass)

Avg Bytes/Pkt (tcprebuilt)

Avg Bytes/Pkt (applayer)

K-Pkts/Sec (wire)

K-Pkts/Sec (ipfrag)

K-Pkts/Sec (ipreass)

K-Pkts/Sec (tcprebuilt)

K-Pkts/Sec (applayer)

Total Packets Received

Total Packets Dropped (not processed)

Total Packets Blocked (inline)

Percentage of Packets Dropped

Total Filtered TCP Packets

Total Filtered UDP Packets

Midstream TCP Sessions/Sec

Closed TCP Sessions/Sec

Pruned TCP Sessions/Sec

TimedOut TCP Sessions/Sec

Dropped Async TCP Sessions/Sec

TCP Sessions Initializing

TCP Sessions Established

TCP Sessions Closing

Max TCP Sessions (interval)

New Cached UDP Sessions/Sec

Cached UDP Ssns Del/Sec

Current Cached UDP Sessions

Max Cached UDP Sessions

Current Attribute Table Hosts (Target Based)

47

e Attribute Table Reloads (Target Based)
e Mbits/Sec (Snort)

e Mbits/Sec (sniffing)

e Mbits/Sec (combined)

e uSeconds/Pkt (Snort)

e uSeconds/Pkt (sniffing)

e uSeconds/Pkt (combined)

e KPkts/Sec (Snort)

e KPkts/Sec (sniffing)

e KPkts/Sec (combined)

The following options can be used with the performance naonit

e flow - Prints out statistics about the type of traffic and protadistributions that Snort is seeing. This option
can produce large amounts of output.

e events - Turns on event reporting. This prints out statistics asriumber of rules that were evaluated and
didn’t match fon-qualified evenjws. the number of rules that were evaluated and matatpealified evenis
A high non-qualified evertb qualified eventatio can indicate there are many rules with either mininaaitent
or no content that are being evaluated without success.adt@attern matcher is used to select a set of rules for
evaluation based on the longeshtent or acontent modified with thefast _pattern rule option in a rule.
Rules with short, generic contents are more likely to bectetefor evaluation than those with longer, more
unigue contents. Rules withocdntent are not filtered via the fast pattern matcher and are alwaghiated,
so if possible, adding eontent rule option to those rules can decrease the number of tinessrteed to be
evaluated and improve performance.

e max- Turns on the theoretical maximum performance that Sndctitates given the processor speed and current
performance. This is only valid for uniprocessor machirs@sce many operating systems don’t keep accurate
kernel statistics for multiple CPUs.

e console - Prints statistics at the console.

o file - Prints statistics in a comma-delimited format to the filattis specified. Not all statistics are output to
this file. You may also usenortfile which will output into your defined Snort log directory. Bodifithese
directives can be overridden on the command line with-ther --perfmon-file options. At startup, Snort
will log a distinctive line to this file with a timestamp to a#taders to easily identify gaps in the stats caused by
Snort not running.

e pkicnt - Adjusts the number of packets to process before checkinthéotime sample. This boosts perfor-
mance, since checking the time sample reduces Snort’srpafee. By default, this is 10000.

e time - Represents the number of seconds between intervals.

e accumulate orreset - Defines which type of drop statistics are kept by the opegasiystem. By default,
reset is used.

e atexitonly - Dump stats for entire life of Snort.

e maxfile _size - Defines the maximum size of the comma-delimited file. Befbeefile exceeds this size, it
will be rolled into a new date stamped file of the format YYYYMADD, followed by YYYY-MM-DD.x, where
x will be incremented each time the comma delimited file i¢eblover. The minimum is 4096 bytes and the
maximum is 2147483648 bytes (2GB). The default is the santleeamaximum.

e flow-ip - Collects IP traffic distribution statistics based on hastg For each pair of hosts for which IP traffic
has been seen, the following statistics are collected ftr bivections (A to B and B to A):

48

— TCP Packets

— TCP Traffic in Bytes

— TCP Sessions Established
— TCP Sessions Closed

— UDP Packets

— UDP Traffic in Bytes

— UDP Sessions Created

— Other IP Packets

— Other IP Traffic in Bytes

These statistics are printed and reset at the end of eachahte

o flow-ip-file - Prints the flow IP statistics in a comma-delimited formattte file that is specified. All of the
statistics mentioned above, as well as the IP addresses bb#t pairs in human-readable format, are included.

o flow-ip-memcap - Sets the memory cap on the hash table used to store IP traffistics for host pairs. Once
the cap has been reached, the table will start to prune tlistists for the least recently seen host pairs to free
memory. This value is in bytes and the default value is 5202880MB).

Examples

preprocessor perfmonitor; \
time 30 events flow file stats.profile max console pktcnt 10 000

preprocessor perfmonitor: \
time 300 file /var/tmp/snortstat pktcnt 10000

preprocessor perfmonitor; \
time 30 flow-ip flow-ip-file flow-ip-stats.csv pktcnt 100 0

2.2.6 HTTP Inspect

HTTP Inspect is a generic HTTP decoder for user applicati@isen a data buffer, HTTP Inspect will decode the
buffer, find HTTP fields, and normalize the fields. HTTP Ingpearks on both client requests and server responses.

The current version of HTTP Inspect only handles statelessgssing. This means that HTTP Inspect looks for HTTP
fields on a packet-by-packet basis, and will be fooled if péelare not reassembled. This works fine when there is
another module handling the reassembly, but there aredliimits in analyzing the protocol. Future versions will have
a stateful processing mode which will hook into various seasbly modules.

HTTP Inspect has a very “rich” user configuration. Users canfigure individual HTTP servers with a variety of
options, which should allow the user to emulate any type df server. Within HTTP Inspect, there are two areas of
configuration: global and server.

Global Configuration

The global configuration deals with configuration optioret tihetermine the global functioning of HTTP Inspect. The
following example gives the generic global configuratiomfat:

Format
preprocessor http_inspect: \

global \
iis_unicode_map <map_filename> \

49

codemap <integer> \
[detect_anomalous_servers] \
[proxy_alert] \

[max_gzip_mem <num>] \
[compress_depth <num>] [decompress_depth <num>] \
disabled

You can only have a single global configuration, you'll getearor if you try otherwise.

Configuration

1.

iis _unicode _map <map_filename > [codemap <integer >]

This is the globaiis _unicode _mapfile. Theiis _unicode _mapis a required configuration parameter. The map
file can reside in the same directorysasrt.conf or be specified via a fully-qualified path to the map file.

Theiis _unicode _mapfile is a Unicode codepoint map which tells HTTP Inspect whioHepage to use when
decoding Unicode characters. For US servers, the codemespaly 1252.

A Microsoft US Unicode codepoint map is provided in the Srsotirceetc directory by default. It is called
unicode.map and should be used if no other codepoint map is availableoissupplied with Snortto generate
custom Unicodeaps--ms _unicode _generator.c , which is available éittp://www.snort.org/dl/contrib/

ANOTE

Remember that this configuration is for the global IIS Unieadap, individual servers can reference their
own IS Unicode map.

detect _anomalous _servers

This global configuration option enables generic HTTP sdarnadfic inspection on non-HTTP configured ports,
and alerts if HTTP traffic is seen. Don't turn this on if you donave a default server configuration that
encompasses all of the HTTP server ports that your userstraggess. In the future, we want to limit this to
specific networks so it's more useful, but for right now, timispects all network traffic.

proxy _alert

This enables global alerting on HTTP server proxy usage. @yiguring HTTP Inspect servers and enabling
allow _proxy _use, you will only receive proxy use alerts for web users thah&nasing the configured proxies
or are using a rogue proxy server.

Please note that if users aren’t required to configure wekypuse, then you may get a lot of proxy alerts. So,
please only use this feature with traditional proxy envimamts. Blind firewall proxies don’t count.

compress _depth <integer > This option specifies the maximum amount of packet payloatktmmpress.
This value can be set from 1 to 20480. The default for thisarpis 1460.

decompress _depth <integer > This option specifies the maximum amount of decompressedtdatbtain
from the compressed packet payload. This value can be setifto 20480. The default for this option is 2920.

max_gzip _mem

This option determines (in bytes) the maximum amount of nrgrttee HTTP Inspect preprocessor will use for
decompression. This value can be set from 3276 bytes to 100KiB option along witttompress _depth and
decompress _depth determines the gzip sessions that will be decompressed/ajieen instant. The default
value for this option is 838860.

ANOTE

Itis suggested to set this value such that the max gzip sesaloulated as follows is atleast 1.
max gzip session max gzip _menv(decompress _depth + compress _depth)

50

http://www.snort.org/dl/contrib/

7. disabled
This optional keyword is allowed with any policy to avoid gatprocessing. This option disables the preproces-

sor. When the preprocessor is disabled only the "rgap_mem”, "compressiepth” and "decompressepth”
options are applied when specified with the configuratiorheDbptions are parsed but not used. Any valid
configuration may have "disabled” added to it.

Example Global Configuration

preprocessor http_inspect: \
global iis_unicode_map unicode.map 1252

Server Configuration

There are two types of server configurations: default andgddress.

Default This configuration supplies the default server configurafiiw any server that is not individually configured.
Most of your web servers will most likely end up using the déffaonfiguration.

Example Default Configuration

preprocessor http_inspect_server: \
server default profile all ports { 80 }

Configuration by IP Address This format is very similar to “default”, the only differeadeing that specific IPs
can be configured.

Example IP Configuration

preprocessor http_inspect_server: \
server 10.1.1.1 profile all ports { 80 }

Configuration by Multiple IP Addresses This format is very similar to “Configuration by IP Addresshe only
difference being that multiple IPs can be specified via a sgaparated list. There is a limit of 40 IP addresses or
CIDR notations pehttp _inspect _server line.

Example Multiple IP Configuration

preprocessor http_inspect_server: \
server { 10.1.1.1 10.2.2.0/24 } profile all ports { 80 }

Server Configuration Options

Important; Some configuration options have an argumentes’pr ‘no’. This argument specifies whether the user
wants the configuration option to generate an HTTP Inspect al not. The ‘yes/no’ argument does not specify
whether the configuration option itself is on or off, only terting functionality. In other words, whether set to ‘yes
or 'no’, HTTP normalization will still occur, and rules basen HTTP traffic will still trigger.

1. profle <all |apache |iis iis5 _Oliis4 _0>

Users can configure HTTP Inspect by using pre-defined HTTWReserofiles. Profiles allow the user to easily
configure the preprocessor for a certain type of server, teuhat required for proper operation.

51

There are five profiles available: all, apache, iis, is5and iis40.

1-A. all

Theall profile is meant to normalize the URI using most of the comnnick¢ available. We alert on the
more serious forms of evasions. This is a great profile foed@ig all types of attacks, regardless of the
HTTP serverprofile all sets the configuration options described in Table 2.3.

Table 2.3: Options for the “all” Profile

Option Setting
serverflow_depth 300
client flow_depth 300
postdepth 0

chunk encoding
iis_unicodemap
ascii decoding on, alert off
multiple slash on, alert off
directory normalization on, alert off

alert on chunks larger than 500000 bytes
codepoint map in the global configuration

max_headerdength 0, header length not checked
max headers 0, number of headers not checked
1-B. apache

apache whitespace on, alert off
double decoding on, alerton
%u decoding on, alerton
bare byte decoding on, alert on
iis unicode codepoints| on, alert on
iis backslash on, alert off
iis delimiter on, alert off
webroot on, alert on
nonstrict URL parsing| on

tab uri_delimiter is set

Theapache profile is used for Apache web servers. This differs fromithe profile by only accepting
UTF-8 standard Unicode encoding and not accepting badietaas legitimate slashes, like IIS does.

Apache also accepts tabs as whitespawefile apache

sets the configuration options described in

Table[Z3.
Table 2.4: Options for thapache Profile
Option Setting
serverflow_depth 300
client flow_depth 300
postdepth 0

chunk encoding

alert on chunks larger than 500000 bytes

ascii decoding on, alert off
multiple slash on, alert off
directory normalization on, alert off
webroot on, alert on
apache whitespace on, alert on
utf_8 encoding on, alert off
non.strict url parsing | on

tab uri_delimiter is set

max_headerdength

0, header length not checked

maxheaders

0, number of headers not checked

1-C. iis
Theiis profile mimics IIS servers. So that means we use |IS Unicodieaps for each server, %u

encoding, bare-byte encoding, double decoding, backetas#c. profile iis sets the configuration
options described in Table2.5.

Table 2.5: Options for thizs Profile

Option Setting
serverflow_depth 300
client flow_depth 300
postdepth 0

chunk encoding

alert on chunks larger than 500000 bytes

iis_unicodemap

codepoint map in the global configuration

ascii decoding

on, alert off

multiple slash on, alert off
directory normalization on, alert off
webroot on, alerton
double decoding on, alert on
%u decoding on, alerton
bare byte decoding on, alert on
iis unicode codepoints| on, alert on
iis backslash on, alert off
iis delimiter on, alerton
apache whitespace on, alert on

nonstrict URL parsing| on

max headetdength 0, header length not checked
max_headers 0, number of headers not checked
1-D. iis4 _0, iis5 _0

In IS 4.0 and IIS 5.0, there was a double decoding vulneitgbiThese two profiles are identical is
except they will alert by default if a URL has a double encgdiBouble decode is not supported in IS
5.1 and beyond, so it's disabled by default.

1-E. default, no profile
The default options used by HTTP Inspect do not use a profdeaemdescribed in Table2.6.
Profiles must be specified as the first server option and cdrencombined with any other options except:

e ports

e iis _unicode _map
e allow _proxy _use
e server _flow _depth

e client _flow _depth
e post _depth

e no_alerts

e inspect _uri _only

e oversize _dir _length
e normalize _headers
e normalize _cookies

e max header _length

e max_headers

e extended _response _inspection
e enable _cookie

e inspect _gzip

These options must be specified afterpiile option.

53

Table 2.6: Default HTTP Inspect Options

Option Setting

port 80

serverflow_depth 300

client flow_depth 300

postdepth 0

chunk encoding alert on chunks larger than 500000 bytes
ascii decoding on, alert off

utf_8 encoding on, alert off

multiple slash on, alert off

directory normalization on, alert off

webroot on, alerton

iis backslash on, alert off

apache whitespace on, alert off

iis delimiter on, alert off

nonstrict URL parsing| on

max headetdength 0, header length not checked

max headers 0, number of headers not checked

Example

preprocessor http_inspect_server: \
server 1.1.1.1 profile all ports { 80 3128 }

. ports {<port > [<port ><..>]}

This is how the user configures which ports to decode on theRH§efFver. However, HTTPS traffic is encrypted
and cannot be decoded with HTTP Inspect. To ignore HTTPfidrake the SSL preprocessor.

. iis _unicode _map <map filename > codemap <integer >

The IIS Unicode map is generated by the programunigodegenerator.c. This program is located on the
Snort.org web site dittp://www.snort.org/dlicontrib/ directory. Executing this program generates a
Unicode map for the system that it was run on. So, to get theifsp&nicode mappings for an IIS web server,

you run this program on that server and use that Unicode m#pdgrconfiguration.

When using this option, the user needs to specify the filedbatains the 11S Unicode map and also specify
the Unicode map to use. For US servers, this is usually 125PtH& msunicodegenerator program tells you
which codemap to use for you server; it's the ANSI code pageL ¢an select the correct code page by looking
at the available code pages that theummicodegenerator outputs.

. extended _response _inspection This enables the extended HTTP response inspection. Theldbftp re-
sponse inspection does not inspect the various fields of aPHESponse. By turning this option the HTTP
response will be thoroughly inspected. The different fiedl HTTP response such as status code, status
message, headers, cookie (when enablakie is configured) and body are extracted and saved irfferbu
Different rule options are provided to inspect these busffer

. enable _cookie This optionsturnson the cookie extraction from HTTP re¢qmand HTTP response. By default
the cookie inspection and extraction will be turned off.

. inspect _gzip This option specifies the HTTP inspect module to uncomphessampressed data(gzip/deflate)
in HTTP response. You should select the config option "extelndsponsénspection” before configuring this
option. Decompression is done across packets. So the deessigm will end when either the 'compredspth’

or 'decompresslepth’ is reached or when the decompress data ends. Whemnthgreéssed data is spanned
across multiple packets, the state of the last decomprgessaet is used to decompressed the data of the next
packet. But the decompressed data are individually insge¢te. the decompressed data from different packets
are not combined while inspecting). Also the amount of dgu@ssed data that will be inspected depends on
the 'serverflow_depth’ configured.

54

http://www.snort.org/dl/contrib/

7.

10.

11.

12.

13.

ANOTE

‘ To enable compression of HTTP server response, Snort sheutdnfigured with the —enable-zlib flag. ‘

server _flow _depth <integer >

This specifies the amount of server response payload todhspleis option significantly increases IDS perfor-

mance because we are ignoring a large part of the netwoffict(efTTP server response payloads). A small
percentage of Snort rules are targeted at this traffic andadl $low_depth value may cause false negatives in
some of these rules. Most of these rules target either theRHi@ader, or the content that is likely to be in the
first hundred or so bytes of non-header data. Headers ardyusnder 300 bytes long, but your mileage may

vary.

This value can be set from -1 to 2920. A value of -1 causes Sodgnore all server side traffic for ports
defined inports . Inversely, a value of O causes Snort to inspect all HTTPesgrayloads defined iports

(note that this will likely slow down IDS performance). Valsiabove 0 tell Snort the number of bytes to inspect
in the first packet of the server response.lt is suggestedttthe 'serverflow_depth’ to its maximum value or
the 'decompressepth’ (if 'decompresslepth’ is less than 2920) when 'inspagzip’ is enabled.

ANOTE

‘ server _flow _depth isthe same as the ofdw _depth option, which will be deprecated in a future relea#e.

client _flow _depth <integer >

This specifies the amount of raw client request payload foeas It is similar taserver _flow _depth (above),
and has a default value of 300. It primarily eliminates Sfiamn inspecting larger HTTP Cookies that appear
at the end of many client request Headers.

post _depth <integer >

This specifies the amount of data to inspect in a client possage. The value can be set from 0 to 65495. The
default value is 0. This increases the performance by insgeonly specified bytes in the post message.

ascii <yes [no>

Theascii decode option tells us whether to decode encoded ASCII chdesa %2f =/, %2e = ., etc. ltis
normal to see ASCII encoding usage in URLS, so it is recomraétitht you disable HTTP Inspect alerting for
this option.

extended _ascii _uri

This option enables the support for extended ascii coddsitiiT TP request URI. This option is turned off by
default and is not supported with any of the profiles.

utf -8 <yes|no>

Theut-8 decode option tells HTTP Inspect to decode standard UTFi8dde sequences that are in the URI.

This abides by the Unicode standard and only uses % encodparhe uses this standard, so for any Apache
servers, make sure you have this option turned on. As fotidgryou may be interested in knowing when you

have a UTF-8 encoded URI, but this will be prone to false pastas legitimate web clients use this type of

encoding. Whentf _8 is enabled, ASCII decoding is also enabled to enforce cbfuectioning.

u-encode <yes |no>

This option emulates the I1IS %u encoding scheme. How the %oding scheme works is as follows: the
encoding scheme is started by a %u followed by 4 charactkes%uxxxx. The xxxx is a hex-encoded value
that correlates to an IIS Unicode codepoint. This value castrdefinitely be ASCII. An ASCII character is

encoded like %u002f = /, %u002e = ., etc. If naisicodemap is specified before or after this option, the
default codemap is used.

You should alert on %u encodings, because we are not awarg éégitimate clients that use this encoding. So
it is most likely someone trying to be covert.

55

14.

15.

16.

17.

18.

19.

20.

21.

bare _byte <yes |no>

Bare byte encoding is an IIS trick that uses non-ASCII chara@s valid values when decoding UTF-8 values.
This is not in the HTTP standard, as all non-ASCII values haviee encoded with a %. Bare byte encoding
allows the user to emulate an IIS server and interpret nandstrd encodings correctly.

The alert on this decoding should be enabled, because theredegitimate clients that encode UTF-8 this
way since it is non-standard.

base36 <yes |no>

This is an option to decode base36 encoded chars. This aptim@sed on info from:

http://www.yK.rim.or.|p/ shikap/patch/spp http_deco de.paich

If %u encoding is enabled, this option will not work. You hawause thérase36 option with theutf _8 option.
Don't use the %u option, because base36 won't work. Wiase36 is enabled, ASCII encoding is also enabled
to enforce correct behavior.

iis _unicode <yes |no>

Theiis _unicode option turns on the Unicode codepoint mapping. If there iisionicodemap option spec-
ified with the server configiis _unicode uses the default codemap. Tlge _unicode option handles the
mapping of non-ASCII codepoints that the IIS server accaptsdecodes normal UTF-8 requests.

You should alert on thiés _unicode option , because itis seen mainly in attacks and evasion attemgtenW
iis _unicode is enabled, ASCIlI and UTF-8 decoding are also enabled taremfmrrect decoding. To alert on
UTF-8 decoding, you must enable also enaltfie.8 yes .

double _decode <yes |no>

Thedouble _decode option is once again 11S-specific and emulates 1IS functibnadow this works is that 11S
does two passes through the request URI, doing decodeshiroeac In the first pass, it seems that all types of
iis encoding is done: utf-8 unicode, ascii, bare byte, and #uhe second pass, the following encodings are
done: ascii, bare byte, and %u. We leave out utf-8 becausel tiow this works is that the % encoded utf-8
is decoded to the Unicode byte in the first pass, and then UiBFRd8coded in the second stage. Anyway, this
is really complex and adds tons of different encodings fa oharacter. Whedouble _decode is enabled, so
ASCIl is also enabled to enforce correct decoding.

non_rfc _char {<byte > [<byte ... >]}

This option lets users receive an alert if certain non-RFarglare used in a request URI. For instance, a user
may not want to see null bytes in the request URI and we cahafhethat. Please use this option with care,
because you could configure it to say, alert on all */’ or sdmreg like that. It's flexible, so be careful.

multi _slash <yes [no>
This option normalizes multiple slashes in a row, so somethke: “foo/////l///bar’ get normalized to “foo/bar.”
If you want an alert when multiple slashes are seen, thengunefivith ayes ; otherwise, useo.

iis _backslash <yes|no>

Normalizes backslashes to slashes. This is again an ||Sationul So a request URI of “/fodar” gets normal-
ized to “/foo/bar.”

directory <yes |no>
This option normalizes directory traversals and self#exfiéial directories.
The directory:

[foolfake_dir/../bar
gets normalized to:
[foolbar

The directory:

56

http://www.yk.rim.or.jp/~shikap/patch/spp_http_decode.patch

22.

23.

24,

25.

26.

27.

28.

29.

30.

[fool./bar
gets normalized to:
[foolbar

If you want to configure an alert, specijgs, otherwise, specifyio. This alert may give false positives, since
some web sites refer to files using directory traversals.

apache _whitespace <yes |[no>

This option deals with the non-RFC standard of using tab fepace delimiter. Apache uses this, so if the
emulated web server is Apache, enable this option. Alertthi@noption may be interesting, but may also be
false positive prone.

iis _delimiter <yes [no>

This started out being 11S-specific, but Apache takes thisstandard delimiter was well. Since this is common,
we always take this as standard since the most popular webrseaccept it. But you can still get an alert on
this option.

chunk _length <non-zero positive integer >

This option is an anomaly detector for abnormally large d¢hsimes. This picks up the Apache chunk encoding
exploits, and may also alert on HTTP tunneling that uses kleacoding.

no_pipeline _req

This option turns HTTP pipeline decoding off, and is a perfance enhancement if needed. By default, pipeline
requests are inspected for attacks, but when this optiondbled, pipeline requests are not decoded and ana-
lyzed per HTTP protocol field. It is only inspected with thengdc pattern matching.

non _strict

This option turns on non-strict URI parsing for the brokenyvia which Apache servers will decode a URI.
Only use this option on servers that will accept URIs likestfiget /index.html alsjdfk alsj |j aj la jsj\1". The
non.strict option assumes the URI is between the first and sequamkseven if there is no valid HTTP identifier
after the second space.

allow _proxy _use

By specifying this keyword, the user is allowing proxy usethis server. This means that no alert will be
generated if theroxy _alert global keyword has been used. If the proadert keyword is not enabled, then
this option does nothing. Thalow _proxy _use keyword is just a way to suppress unauthorized proxy use for
an authorized server.

no_alerts

This option turns off all alerts that are generated by the ATiispect preprocessor module. This has no effect
on HTTP rules in the rule set. No argument is specified.

oversize _dir _length <non-zero positive integer >

This option takes a non-zero positive integer as an argunigm argument specifies the max char directory
length for URL directory. If a url directory is larger thanishargument size, an alert is generated. A good
argument value is 300 characters. This should limit thetsterIDS evasion type attacks, like whisker -i 4.

inspect _uri _only

This is a performance optimization. When enabled, only thd portion of HTTP requests will be inspected
for attacks. As this field usually contains 90-95% of the wihcks, you'll catch most of the attacks. So if
you need extra performance, enable this optimization.irttjgortant to note that if this option is used without
anyuricontent rules, then no inspection will take place. This is obviougsithe URI is only inspected with
uricontent rules, and if there are none available, then there is notioimgspect.

For example, if we have the following rule set:

57

alert tcp any any -> any 80 (msg:"content"; content: "foo";)
and the we inspect the following URI:
get /foo.htm http/1.0\r\n\r\n

No alert will be generated whemspect _uri _only is enabled. Thaspect _uri _only configuration turns off
all forms of detection excepticontent inspection.

31. maxheader _length <positive integer up to 65535 >
This option takes an integer as an argument. The integeeisndximum length allowed for an HTTP client
request header field. Requests that exceed this length aviBeca "Long Header” alert. This alert is off by
default. To enable, specify an integer argument to theaderlength of 1 to 65535. Specifying a value of O is
treated as disabling the alert.

32. webroot <yes|no>
This option generates an alert when a directory traversaktses past the web server root directory. This
generates much fewer false positives than the directonpopbecause it doesn't alert on directory traversals
that stay within the web server directory structure. It oalgrts when the directory traversals go past the web
server root directory, which is associated with certain \&#hcks.

33. tab _uri _delimiter
This option turns on the use of the tab character (0x09) adlimitr for a URI. Apache accepts tab as a
delimiter; IIS does not. For 1IS, a tab in the URI should bateel as any other character. Whether this option is
on or not, a tab is treated as whitespace if a space char@gd)precedes it. No argument is specified.

34. normalize _headers
This option turns on normalization for HTTP Header Fieldstincluding Cookies (using the same configuration
parameters as the URI normalization (ie, multi-slash,ading, etc.). It is useful for normalizing Referrer URIs
that may appear in the HTTP Header.

35. normalize _cookies
This option turns on normalization for HTTP Cookie Fieldsifig the same configuration parameters as the
URI normalization (ie, multi-slash, directory, etc.). stuseful for normalizing data in HTTP Cookies that may
be encoded.

36. maxheaders <positive integer up to 1024 >
This option takes an integer as an argument. The integee ismtximum number of HTTP client request header
fields. Requests that contain more HTTP Headers than thig vaill cause a "Max Header” alert. The alert is
off by default. To enable, specify an integer argument to theaders of 1 to 1024. Specifying a value of 0 is
treated as disabling the alert.

Examples

preprocessor http_inspect_server; \
server 10.1.1.1 \
ports { 80 3128 8080 } \
server_flow_depth 0 \
ascii no \
double_decode yes \
non_rfc_char { 0x00 } \
chunk_length 500000 \
non_strict \
no_alerts

preprocessor http_inspect_server; \

58

server default \

ports { 80 3128 } \
non_strict \

non_rfc_char { Ox00 } \
server_flow_depth 300 \
apache_whitespace yes \
directory no \
iis_backslash no \
u_encode yes \

ascii no \

chunk_length 500000 \
bare_byte yes \
double_decode yes \
iis_unicode yes \
iis_delimiter yes \
multi_slash no

preprocessor http_inspect_server; \
server default \
profile all \
ports { 80 8080 }

2.2.7 SMTP Preprocessor

The SMTP preprocessor is an SMTP decoder for user applicati®iven a data buffer, SMTP will decode the buffer
and find SMTP commands and responses. It will also mark the@omd, data header data body sections, and TLS
data.

SMTP handles stateless and stateful processing. It saateststtween individual packets. However maintaining
correct state is dependent on the reassembly of the clidéatdithe stream (ie, a loss of coherent stream data results
in a loss of state).

Configuration

SMTP has the usual configuration items, suclp@s andinspection _type . Also, SMTP command lines can be
normalized to remove extraneous spaces. TLS-encryptéittcan be ignored, which improves performance. In
addition, regular mail data can be ignored for an additigresformance boost. Since so few (none in the current snort
rule set) exploits are against mail data, this is relatigalfe to do and can improve the performance of data inspection

The configuration options are described below:

1. ports { <port> [<port>] ... }
This specifies on what ports to check for SMTP data. Typicahis will include 25 and possibly 465, for
encrypted SMTP.

2. inspection _type <stateful | stateless>
Indicate whether to operate in stateful or stateless mode.

3. normalize <all | none | cmds>

This turns on normalization. Normalization checks for mtbr@n one space character after a command. Space
characters are defined as space (ASCII 0x20) or tab (ASCRBOx0

all checks all commands
none turns off normalization for all commands.
cmds just checks commands listed with the@malize _cmds parameter.

59

10.

11.

12.

ignore _data
Ignore data section of mail (except for mail headers) wheegssing rules.

ignore _tls _data
Ignore TLS-encrypted data when processing rules.

max_.commanc.line _len <int>

Alert if an SMTP command line is longer than this value. Alxseof this option or a "0” means never alert on
command line length. RFC 2821 recommends 512 as a maximumaarhline length.

max_header _line _len <int>

Alert if an SMTP DATA header line is longer than this value. g8imce of this option or a "0” means never alert
on data header line length. RFC 2821 recommends 1024 as anaxdata header line length.

max_response _line _len <int>

Alert if an SMTP response line is longer than this value. Alegeof this option or a "0” means never alert on
response line length. RFC 2821 recommends 512 as a maxingponge line length.

alt _max.commandline _len <int> { <cmd> [<cmd>] }

Overridesmax_command.line _len for specific commands.

no_alerts
Turn off all alerts for this preprocessor.

invalid _cmds { <Space-delimited list of commands> }
Alert if this command is sent from client side. Default is anpy list.

valid _cmds { <Space-delimited list of commands> }

List of valid commands. We do not alert on commands in thts Default is an empty list, but preprocessor has
this list hard-coded:

{ ATRN AUTH BDAT DATA DEBUG EHLO EMAL ESAM ESND ESOM ETRN EVFY EXN } { HELO
HELP IDENT MAIL NOOP QUIT RCPT RSET SAML SOML SEND ONEX QUEY { STARTTLS TICK
TIME TURN TURNME VERB VRFY X-EXPS X-LINK2STATE} { XADR XAUTH XCIR XEXCH50 XGEN
XLICENSE XQUE XSTA XTRN XUSR}

13. alert _unknown _cmds
Alert if we don’t recognize command. Default is off.

14. normalize _cmds { <Space-delimited list of commands> }
Normalize this list of commands Default{SRCPT VRFY EXPN}.

15. xlink2state { enable | disable [drop] }
Enable/disable xlink2state alert. Drop if alerted. Defauénable .

16. print _cmds
List all commands understood by the preprocessor. Thisawbally printed out with the configuration because
it can print so much data.

Example

preprocessor SMTP: \
ports { 25 } \
inspection_type stateful \
normalize cmds \
normalize_cmds { EXPN VRFY RCPT } \
ignore_data \

60

ignore_tls_data \

max_command_line_len 512 \
max_header_line_len 1024 \
max_response_line_len 512 \

no_alerts \

alt_max_command_line_len 300 { RCPT } \
invalid_cmds { } \

valid_cmds { } \

xlink2state { disable } \

print_cmds

Default

preprocessor SMTP: \
ports { 25 } \
inspection_type stateful \
normalize cmds \
normalize_cmds { EXPN VRFY RCPT } \
alt_max_command_line_len 260 { MAIL } \
alt_max_command_line_len 300 { RCPT } \
alt_max_command_line_len 500 { HELP HELO ETRN } \
alt_max_command_line_len 255 { EXPN VRFY }

Note

RCPT TO:andMAIL FROM:are SMTP commands. For the preprocessor configuration aireeyeferred to as RCPT
and MAIL, respectively. Within the code, the preprocessdually maps RCPT and MAIL to the correct command
name.

2.2.8 FTP/Telnet Preprocessor

FTP/Telnet is an improvement to the Telnet decoder and gesvstateful inspection capability for both FTP and
Telnet data streams. FTP/Telnet will decode the streamtifgisng FTP commands and responses and Telnet escape
sequences and normalize the fields. FTP/Telnet works ondlietit requests and server responses.

FTP/Telnet has the capability to handle stateless pramgssieaning it only looks for information on a packet-by-
packet basis.

The defaultis to run FTP/Telnet in stateful inspection madeaning it looks for information and handles reassembled
data correctly.

FTP/Telnet has a very “rich” user configuration, similar bat of HTTP Inspect (Sde2Z2.6). Users can configure
individual FTP servers and clients with a variety of optiowkich should allow the user to emulate any type of FTP
server or FTP Client. Within FTP/Telnet, there are four arebconfiguration: Global, Telnet, FTP Client, and FTP

Server.

ANOTE

Some configuration options have an argumeryesf or no. This argument specifies whether the user wants
the configuration option to generate a ftptelnet alert or Adte presence of the option indicates the optjon
itself is on, while theyes/no argument applies to the alerting functionality associatéh that option.

Global Configuration

The global configuration deals with configuration optionatttietermine the global functioning of FTP/Telnet. The
following example gives the generic global configuratiomiat:

61

Format

preprocessor ftp_telnet: \
global \
inspection_type stateful \
encrypted_traffic yes \
check_encrypted

You can only have a single global configuration, you'll geteror if you try otherwise. The FTP/Telnet global
configuration must appear before the other three areas dijcwation.

Configuration
1. inspection _type
This indicates whether to operate in stateful or statelesdem

2. encrypted _traffic <yes|no >
This option enables detection and alerting on encryptedefeind FTP command channels.

ANOTE

Wheninspection _type is in stateless mode, checks for encrypted traffic will ocouevery packet, wheregs
in stateful mode, a particular session will be noted as grted/and not inspected any further.

3. check _encrypted

Instructs the preprocessor to continue to check an enahgetgsion for a subsequent command to cease encryp-
tion.

Example Global Configuration

preprocessor ftp_telnet: \
global inspection_type stateful encrypted traffic no

Telnet Configuration

The telnet configuration deals with configuration optiorat tthetermine the functioning of the Telnet portion of the
preprocessor. The following example gives the generietationfiguration format:

Format

preprocessor ftp_telnet_protocol: \
telnet \
ports { 23 } \
normalize \
ayt_attack_thresh 6 \
detect_anomalies

There should only be a single telnet configuration, and syesa instances will override previously set values.

62

Configuration

1. ports {<port > [<port ><..>]}
This is how the user configures which ports to decode as telfét. SSH tunnels cannot be decoded, so adding
port 22 will only yield false positives. Typically port 23 ivbe included.

2. normalize

This option tells the preprocessor to normalize the telradfit by eliminating the telnet escape sequences. It
functions similarly to its predecessor, the teldetcode preprocessor. Rules written with 'raw’ contentamti
will ignore the normalized buffer that is created when thisien is in use.

3. ayt _attack _thresh < number >

This option causes the preprocessor to alert when the nunfbewnsecutive telnet Are You There (AYT)
commands reaches the number specified. It is only applicetda the mode is stateful.

4. detect _anomalies

In order to support certain options, Telnet supports subtiagon. Per the Telnet RFC, subnegotiation begins
with SB (subnegotiation begin) and must end with an SE (sgbiietion end). However, certain implementa-

tions of Telnet servers will ignore the SB without a corresging SE. This is anomalous behavior which could
be an evasion case. Being that FTP uses the Telnet proto¢béaontrol connection, it is also susceptible to

this behavior. Theletect _anomalies option enables alerting on Telnet SB without the correspunp8E.

Example Telnet Configuration

preprocessor ftp_telnet_protocol: \
telnet ports { 23 } normalize ayt attack_thresh 6

FTP Server Configuration

There are two types of FTP server configurations: defaultniP address.

Default This configuration supplies the default server configuratar any FTP server that is not individually con-
figured. Most of your FTP servers will most likely end up usthg default configuration.

Example Default FTP Server Configuration

preprocessor ftp_telnet_protocol: \
ftp server default ports { 21 }

Refer tdBb for the list of options set in default ftp servenfiguration.

Configuration by IP Address This format is very similar to “default”, the only differeadeing that specific IPs
can be configured.

Example IP specific FTP Server Configuration

preprocessor _telnet_protocol: \
ftp server 10.1.1.1 ports { 21 } ftp_cmds { XPWD XCWD }

63

FTP Server Configuration Options

1.

ports {<port > [<port >< ...>]}

This is how the user configures which ports to decode as FTRr@omd channel traffic. Typically port 21 will
be included.

print _cmds

During initialization, this option causes the preprocess@rint the configuration for each of the FTP commands
for this server.

ftp cmds {cmdcmd}

The preprocessor is configured to alert when it sees an FThemah that is not allowed by the server.

This option specifies a list of additional commands allowgdHis server, outside of the default FTP command
set as specified in RFC 959. This may be used to allow the use okt commands identified in RFC 775, as
well as any additional commands as needed.

For example:
ftp_cmds { XPWD XCWD XCUP XMKD XRMD }

def _max_param _len <number >

This specifies the default maximum allowed parameter lefgytn FTP command. It can be used as a basic
buffer overflow detection.

alt _max_param_len <number> {cmdcmd}

This specifies the maximum allowed parameter length for geeified FTP command(s). It can be used as a
more specific buffer overflow detection. For example the USBRmand — usernames may be no longer than
16 bytes, so the appropriate configuration would be:

alt_max_param_len 16 { USER }
chk _str _fmt {cmdcmd}
This option causes a check for string format attacks in tleeifipd commands.

cmd_validity emd < fmt >
This option specifies the valid format for parameters of @gigommand.
fmt must be enclosed ir>’s and may contain the following:

Value Description
int Parameter must be an integer
number Parameter must be an integer between 1 and 255
char<chars> Parameter must be a single character, onediars>
date<datefmt- Parameter follows format specified, where:

n Number

C Character
I optional format enclosed

| OR
{} choice of options
.+~ literal
string Parameter is a string (effectively unrestricted)
hostport Parameter must be a host/port specified, per RFC 959
long hostport Parameter must be a long host port specified, per RFC
1639
extendedchostport | Parameter must be an extended host port specified, per
RFC 2428
{}] One of choices enclosed within, separated by
{11 One of the choices enclosed withj, optional value

enclosed withir]

64

Examples of the cmdalidity option are shown below. These examples are theuttafhecks, per RFC 959 and
others performed by the preprocessor.

cmd_validity MODE <char SBC>

cmd_validity STRU <char FRP>

cmd_validity ALLO < int [char R int] >

cmd_validity TYPE < { char AE [char NTC] | char | | char L [numbe r]j}>
cmd_validity PORT < host_port >

A cmd_validity line can be used to override these defaults andidraacheck for other commands.

This allows additional modes, including mode Z which allow s for
zip-style compression.
cmd_validity MODE < char ASBCZ >

Allow for a date in the MDTM command.
cmd_validity MDTM < [date nnnnnnnnnnnnnnl.n[n[n]]]] stri ng >

MDTM is an off case that is worth discussing. While not paraofestablished standard, certain FTP servers ac-
cept MDTM commands that set the modification time on a file. flket common among servers that do, accept
aformatusing YYYYMMDDHHmMmss[.uuu]. Some others accem@fat using YYYYMMDDHHmMmMss[+—-

]TZ format. The example above is for the first case (time fdramspecified in http://www.ietf.org/internet-
drafts/draft-ietf-ftpext-mist-16.txt)

To check validity for a server that uses the TZ format, usdalewing:
cmd_validity MDTM < [date nnnnnnnnnnnnnn[{+|-}n[n]]] str ing >

8. telnet _cmds <yes|no>

This option turns on detection and alerting when telnetpssaquences are seen on the FTP command channel.
Injection of telnet escape sequences could be used as aareatempt on an FTP command channel.

9. ignore _telnet _erase _cmds <yes|no >

This option allows Snort to ignore telnet escape sequermcesdse character (TNC EAC) and erase line (TNC
EAL) when normalizing FTP command channel. Some FTP semersot process those telnet escape se-
quences.

10. data _chan

This option causes the rest of snort (rules, other prepemesyto ignore FTP data channel connections. Using
this option means thalO INSPECTION other than TCP state will be performed on FTP data transfiérs.
can be used to improve performance, especially with largerfinsfers from a trusted source. If your rule set
includes virus-type rules, it is recommended that thisaptiot be used.

Use of the "datachan” option is deprecated in favor of the "ignatatachan” option. "datachan” will be
removed in a future release.
11. ignore _data _chan <yes |no>

This option causes the rest of Snort (rules, other prepsms¥to ignore FTP data channel connections. Setting
this option to "yes” means th&tO INSPECTION other than TCP state will be performed on FTP data transfers.
It can be used to improve performance, especially with léitgeransfers from a trusted source. If your rule set
includes virus-type rules, it is recommended that thisaptiot be used.

FTP Server Base Configuration Options
The base FTP server configuration is as follows. Optionsipddn the configuration file will modify this set of

options. FTP commands are added to the set of allowed consnd@hé other options will override those in the base
configuration.

65

def_max_param_len 100
ftp_cmds { USER PASS ACCT CWD CDUP SMNT

QUIT REIN TYPE STRU MODE RETR

STOR STOU APPE ALLO REST RNFR

RNTO ABOR DELE RMD MKD PWD LIST

NLST SITE SYST STAT HELP NOOP }

ftp_cmds { AUTH ADAT PROT PBSZ CONF ENC }
ftp_cmds { PORT PASV LPRT LPSV EPRT EPSV }
ftp_cmds { FEAT OPTS }
ftp_cmds { MDTM REST SIZE MLST MLSD }
alt_max_param_len 0 { CDUP QUIT REIN PASV STOU ABOR PWD SYST ROP }
cmd_validity MODE < char SBC >
cmd_validity STRU < char FRPO [string | >
cmd_validity ALLO < int [char R int] >
cmd_validity TYPE < { char AE [char NTC] | char | | char L [numbe rj}>
cmd_validity PORT < host_port >
cmd_validity LPRT < long_host_port >
cmd_validity EPRT < extd_host_port >
cmd _validity EPSV < [{'1' | 2 | 'ALL’ }] >

FTP Client Configuration

Similar to the FTP Server configuration, the FTP client camfigions has two types: default, and by IP address.

Default This configuration supplies the default client configunatior any FTP client that is not individually con-
figured. Most of your FTP clients will most likely end up usitige default configuration.

Example Default FTP Client Configuration

preprocessor ftp_telnet_protocol: \
ftp client default bounce no max_resp_len 200

Configuration by IP Address This format is very similar to “default”, the only differeadeing that specific IPs
can be configured.

Example IP specific FTP Client Configuration

preprocessor ftp_telnet_protocol: \
ftp client 10.1.1.1 bounce yes max_resp_len 500

FTP Client Configuration Options

1. maxresp _len <number >

This specifies the maximum allowed response length to an BRPr@and accepted by the client. It can be used
as a basic buffer overflow detection.

2. bounce <yes|no >

This option turns on detection and alerting of FTP bounccitt. An FTP bounce attack occurs when the FTP
PORT command is issued and the specified host does not matblesghof the client.

3. bounce _to < CIDR,[port |portlow,porthi] >

66

When the bounce option is turned on, this allows the PORT canahio use the IP address (in CIDR format) and
port (or inclusive port range) without generating an alértan be used to deal with proxied FTP connections
where the FTP data channel is different from the client.

A few examples:
e Allow bounces to 192.162.1.1 port 20020 — ie, the usBQRT 192,168,1,1,78,52
bounce_to { 192.168.1.1,20020 }

e Allow bounces to 192.162.1.1 ports 20020 through 20040 thie,use ofPORT 192,168,1,1,78,xx
where xx is 52 through 72 inclusive.

bounce_to { 192.168.1.1,20020,20040 }
e Allow bouncesto 192.162.1.1 port 20020 and 192.168.1.220630.
bounce_to { 192.168.1.1,20020 192.168.1.2,20030 }

4. telnet _cmds <yes|no >

This option turns on detection and alerting when telnetpssaquences are seen on the FTP command channel.
Injection of telnet escape sequences could be used as aareatempt on an FTP command channel.

5. ignore _telnet _erase _cmds <yeslno >

This option allows Snort to ignore telnet escape sequemaesdse character (TNC EAC) and erase line (TNC
EAL) when normalizing FTP command channel. Some FTP clidotsot process those telnet escape sequences.

Examples/Default Configuration from snort.conf

preprocessor ftp_telnet: \
global \
encrypted_traffic yes \
inspection_type stateful

preprocessor ftp_telnet_protocol:\
telnet \
normalize \
ayt_attack_thresh 200

This is consistent with the FTP rules as of 18 Sept 2004.

Set CWD to allow parameter length of 200

MODE has an additional mode of Z (compressed)

Check for string formats in USER & PASS commands

Check MDTM commands that set modification time on the file.

preprocessor ftp_telnet_protocol: \
ftp server default \
def_max_param_len 100 \
alt_max_param_len 200 { CWD } \
cmd_validity MODE < char ASBCZ > \
cmd_validity MDTM < [date nnnnnnnnnnnnnnl.n[n[n]]]] stri ng >\
chk_str_fmt { USER PASS RNFR RNTO SITE MKD } \
telnet_cmds yes \
ignore_data_chan yes

preprocessor ftp_telnet_protocol: \
ftp client default \
max_resp_len 256 \
bounce yes \
telnet_cmds yes

67

2.29 SSH

The SSH preprocessor detects the following exploits: @hgk-Response Buffer Overflow, CRC 32, Secure CRT,
and the Protocol Mismatch exploit.

Both Challenge-Response Overflow and CRC 32 attacks octarrtheé key exchange, and are therefore encrypted.
Both attacks involve sending a large payload (20kb+) to #mees immediately after the authentication challenge. To
detect the attacks, the SSH preprocessor counts the nuribgies transmitted to the server. If those bytes exceed a
predefined limit within a predefined number of packets, art alggenerated. Since the Challenge-Response Overflow
only effects SSHv2 and CRC 32 only effects SSHv1, the SSHoressring exchange is used to distinguish the attacks.

The Secure CRT and protocol mismatch exploits are obsex\adibre the key exchange.

Configuration

By default, all alerts are disabled and the preprocessaahteaffic on port 22.

The available configuration options are described below.

1. server _ports {<port > [<port >< ...>]}
This option specifies which ports the SSH preprocessor shinspect traffic to.

2. maxencrypted _packets < number >
The number of encrypted packets that Snort will inspectifgeiffnoring a given SSH session. The SSH vulner-
abilities that Snort can detect all happen at the very beggof an SSH session. Once marcryptedpackets
packets have been seen, Snort ignores the session to imgdsrmance.

3. maxclient _bytes < number >
The number of unanswered bytes allowed to be transferrextdaferting on Challenge-Response Overflow or
CRC 32. This number must be hit before mexcryptedpackets packets are sent, or else Snort will ignore the
traffic.

4. maxserver _version _len < number >
The maximum number of bytes allowed in the SSH server versiong before alerting on the Secure CRT
server version string overflow.

5. autodetect
Attempt to automatically detect SSH.

6. enable _respoverflow
Enables checking for the Challenge-Response Overflow &xplo

7. enable _sshlcrc32
Enables checking for the CRC 32 exploit.

8. enable _srvoverflow
Enables checking for the Secure CRT exploit.

9. enable _protomismatch
Enables checking for the Protocol Mismatch exploit.

10. enable _badmsgdir

Enable alerts for traffic flowing the wrong direction. Fortausce, if the presumed server generates client traffic,
or if a client generates server traffic.

11. enable _paysize
Enables alerts for invalid payload sizes.

68

12. enable _recognition
Enable alerts for non-SSH traffic on SSH ports.

The SSH preprocessor should work by default. After neaxryptedpackets is reached, the preprocessor will stop
processing traffic for a given session. If Challenge-Respddverflow or CRC 32 false positive, try increasing the
number of required client bytes with mapkient bytes.

Example Configuration from snort.conf

Looks for attacks on SSH server port 22. Alerts at 19600 unawkedged bytes within 20 encrypted packets for the
Challenge-Response Overflow/CRC32 exploits.

preprocessor ssh: \
server ports { 22 } \
max_client_bytes 19600 \
max_encrypted_packets 20 \
enable_respoverflow \
enable_sshlcrc32

2.2.10 DCE/RPC

ANOTE

The dcerpc preprocessor is now considered deprecated and will be rechova future release. Please
use thedcerpc2 preprocessor in its place. See secfion 2J2.14 of this meamIREADME.dcerpc2 fo
documentation.

The dcerpc preprocessor detects and decodes SMB and DCERIHC It is primarily interested in DCE/RPC
requests, and only decodes SMB to get to the potential DOEARBuests carried by SMB.

Currently, the preprocessor only handles desegmentatt@MB and TCP layers) and defragmentation of DCE/RPC.
Snort rules can be evaded by using both types of fragmentatiith the preprocessor enabled, the rules are given
reassembled DCE/RPC data to examine.

At the SMB layer, only segmentation using WriteAndX is cunttg reassembled. Other methods will be handled in
future versions of the preprocessor.

Autodetection of SMB is done by looking foixFFSMB” at the start of the SMB data, as well as checking the NetBIOS
header (which is always present for SMB) for the type "Sessiessage”.

Autodetection of DCE/RPC is not as reliable. Currently, tybes are checked in the packet. Assuming that the data
is a DCE/RPC header, one byte is checked for DCE/RPC versiml Binother for a DCE/RPC PDU type of Request.
If both match, the preprocessor proceeds with the assumitad it is looking at DCE/RPC data. If subsequent checks
are nonsensical, it ends processing.

Configuration
The preprocessor has several optional configuration ogptidhey are described below:
e autodetect

In addition to configured ports, try to autodetect DCE/RP€s&ms. Note that DCE/RPC can run on practically
any port in addition to the more common ports. This optionasagonfigured by default.

69

ports smb { <port > [< port> <.>] }

Ports that the preprocessor monitors for SMB traffic. Defaté ports 139 and 445.

ports dcerpc { <port > [< port> <.>] }

Ports that the preprocessor monitors for DCE/RPC over T&ffldr Default is port 135.

disable _smb_frag

Do not do SMB desegmentation. Unless you are experienciregsgerformance issues, this option should not
be configured as SMB segmentation provides for an easy evapjgortunity. This option is not configured by
default.

disable _dcerpc _frag

Do not do DCE/RPC defragmentation. Unless you are expedrigreevere performance issues, this option
should not be configured as DCE/RPC fragmentation providearf easy evasion opportunity. This option is
not configured by default.

max_frag _size <number >

Maximum DCE/RPC fragment size to put in defragmentatiorfidsuin bytes. Default is 3000 bytes.

memcap <number >

Maximum amount of memory available to the DCE/RPC preprece®r desegmentation and defragmentation,
in kilobytes. Default is 100000 kilobytes.

disabled

This optional keyword is allowed with any policy to avoid patprocessing. This option disables the preproces-
sor. When the preprocessor is disabled only the memcaproigtapplied when specified with the configuration.
The other options are parsed but not used. Any valid configuranay have "disabled” added to it.

alert _memcap

Alert if memcap is exceeded. This option is not configured &fadlt.

reassemble _increment <number >

This option specifies how often the preprocessor shoulde@acassembled packet to send to the detection
engine with the data that's been accrued in the segmentatidriragmentation reassembly buffers, before the
final desegmentation or defragmentation of the DCE/RPCeastuakes place. This will potentially catch an
attack earlier and is useful if in inline mode. Since the poepssor looks at TCP reassembled packets (to avoid
TCP overlaps and segmentation evasions), the last packet attack using DCE/RPC segmented/fragmented
evasion techniques may have already gone through befongrépeocessor looks at it, so looking at the data
early will likely catch the attack before all of the exploitd has gone through. Note, however, that in using
this option, Snort will potentially take a performance hiklot recommended if Snort is running in passive
mode as it's not really needed. The argument to the optiooifsge how often the preprocessor should create
a reassembled packet if there is data in the segmentatignientation buffers. If not specified, this option is
disabled. A value of 0 will in effect disable this option asle

70

Configuration Examples

In addition to defaults, autodetect SMB and DCE/RPC sessiomon-configured ports. Don’t do desegmentation on
SMB writes. Truncate DCE/RPC fragment if greater than 40g@$

preprocessor dcerpc: \
autodetect \
disable_smb_frag \
max_frag_size 4000

In addition to defaults, don't do DCE/RPC defragmentati®aet memory cap for desegmentation/defragmentation to
50,000 kilobytes. (Since no DCE/RPC defragmentation véltone the memory cap will only apply to desegmenta-
tion.)

preprocessor dcerpc: \
disable_dcerpc_frag \
memcap 50000

In addition to the defaults, detect on DCE/RPC (or TCP) pb8ts and 2103 (overrides default). Set memory cap for
desegmentation/defragmentationto 200,000 kilobytesatéra reassembly packet every time through the prepracesso
if there is data in the desegmentation/defragmentaticfiefsif

preprocessor dcerpc: \
ports dcerpc { 135 2103 } \
memcap 200000 \
reassemble_increment 1

Default Configuration
If no options are given to the preprocessor, the default gandition will look like:

preprocessor dcerpc: \
ports smb { 139 445 } \
ports dcerpc { 135 } \
max_frag_size 3000 \
memcap 100000 \
reassemble_increment 0

Preprocessor Events

There is currently only one alert, which is triggered wheea tineprocessor has reached tencap limit for memory
allocation. The alert is gid 130, sid 1.

Note

At the current time, there is not much to do with the dcerp@poeessor other than turn it on and let it reassemble
fragmented DCE/RPC packets.

2.2.11 DNS

The DNS preprocessor decodes DNS Responses and can dettattdwing exploits: DNS Client RData Overflow,
Obsolete Record Types, and Experimental Record Types.

DNS looks at DNS Response traffic over UDP and TCP and it regutream preprocessor to be enabled for TCP
decoding.

71

Configuration

By default, all alerts are disabled and the preprocessankshteaffic on port 53.

The available configuration options are described below.

1. ports {<port > [<port >< ...>]}
This option specifies the source ports that the DNS prepsacatiould inspect traffic.

2. enable _obsolete _types
Alert on Obsolete (per RFC 1035) Record Types

3. enable _experimental _types
Alert on Experimental (per RFC 1035) Record Types

4. enable _rdata _overflow
Check for DNS Client RData TXT Overflow

The DNS preprocessor does nothing if none of the 3 vulnétigisiit checks for are enabled. It will not operate on
TCP sessions picked up midstream, and it will cease operatica session if it loses state because of missing data
(dropped packets).

Examples/Default Configuration from snort.conf

Looks for traffic on DNS server port 53. Check for the DNS Cli&Data overflow vulnerability. Do not alert on
obsolete or experimental RData record types.

preprocessor dns: \
ports { 53 } \
enable_rdata_overflow

2.2.12 SSL/TLS

Encrypted traffic should be ignored by Snort for both perfante reasons and to reduce false positives. The SSL
Dynamic Preprocessor (SSLPP) decodes SSL and TLS traffioptighally determines if and when Snort should
stop inspection of it.

Typically, SSL is used over port 443 as HTTPS. By enablingS3B& PP to inspect port 443 and enabling the noin-
spectencrypted option, only the SSL handshake of each connegfibhe inspected. Once the traffic is determined
to be encrypted, no further inspection of the data on the ection is made.

By default, SSLPP looks for a handshake followed by encq/piffic traveling to both sides. If one side responds
with an indication that something has failed, such as thel$iaake, the session is not marked as encrypted. Verifying
that faultless encrypted traffic is sent from both endpoémsures two things: the last client-side handshake packet
was not crafted to evade Snort, and that the traffic is legitity encrypted.

In some cases, especially when packets may be missed, thelmserved response from one endpoint will be TCP
ACKs. Therefore, if a user knows that server-side encrypsgd can be trusted to mark the session as encrypted, the
user should use the 'trustservers’ option, documentedibelo

Configuration

1. ports {<port > [<port ><..>]}
This option specifies which ports SSLPP will inspect traffic o
By default, SSLPP watches the following ports:

72

e 443 HTTPS
e 465 SMTPS
e 563 NNTPS
e 636 LDAPS
e 989 FTPS
e 992 TelnetS
e 993 IMAPS
e 994 IRCS
e 995 POPS

2. noinspect _encrypted
Disable inspection on traffic that is encrypted. Defaultffs o

3. ftrustservers

Disables the requirement that application (encrypted daist be observed on both sides of the session before
a session is marked encrypted. Use this option for slighetyen performance if you trust that your servers are
not compromised. This requires theinspect _encrypted option to be useful. Default is off.

Examples/Default Configuration from snort.conf

Enables the SSL preprocessor and tells it to disable ingpech encrypted traffic.

preprocessor ssl: noinspect_encrypted

Rule Options

The following rule options are supported by enablinggtle preprocessor:

ssl_version
ss|_state

ssl _version

Thessl _version rule option tracks the version negotiated between the entpof the SSL encryption. The
list of version identifiers are below, and more than one ifientcan be specified, via a comma separated list.
Lists of identifiers are OR’ed together.

The option will match if any one of the OR’ed versions are uetthe SSL connection. To check for two SSL
versions in use simultaneously, multigi _version rule options should be used.

The rule option does not support negation.
Syntax

ssl_version: <ssl-version-list>

ssl-version-list = ssl-version | ssl-version , ssl-versio n-list
ssl-version = sslv2 | ssiv3 | tls1.0 | tls1.1 | tls1.2

Example

ssl_version: sslv3

ssl_version: tIs1.0 | tls1.1 | tls1.2

ssl _state

73

Thessl _state rule option tracks the state of the SSL encryption duringatoeess of hello and key exchange.
The list of states are below. More than one state can be sgibcifia a comma separated list, and are OR’e
together.

The option will match if the connection has passed througtoae of the OR’ed states. To ensure the connection
is reached each of a set of states, multgsle_state rule options should be used.

The rule option does not support negation.
Syntax

ssl_state: <ssl-state-list>

ssl-state-list = ssl-state | ssl-state , ssl-state-list
ssl-state = client_hello | server_hello | client_keyx | ser ver_keyx | unknown

Example
ssl_state: client_hello

ssl_state: client_keyx | server_keyx

2.2.13 ARP Spoof Preprocessor
The ARP spoof preprocessor decodes ARP packets and deteBta#hacks, unicast ARP requests, and inconsistent
Ethernet to IP mapping.

When no arguments are specified to arpspoof, the prepradespects Ethernet addresses and the addresses in the
ARP packets. When inconsistency occurs, an alert with GIDdrid SID 2 or 3 is generated.

When ™unicast " is specified as the argument of arpspoof, the preprocessrks for unicast ARP requests. An
alert with GID 112 and SID 1 will be generated if a unicast ARBuest is detected.

Specify a pair of IP and hardware address as the argumerigmof _detect _host . The host with the IP address
should be on the same layer 2 segment as Snort is. SpecifyostéFhMAC combo per line. The preprocessor will
use this list when detecting ARP cache overwrite attacksrt/8ID 4 is used in this case.

Format

preprocessor arpspoof[: -unicast]
preprocessor arpspoof _detect host; ip mac

Option | Description
ip IP address.
mac The Ethernet address corresponding to the preceding IP.

Example Configuration

The first example configuration does neither unicast detector ARP mapping monitoring. The preprocessor merely
looks for Ethernet address inconsistencies.

preprocessor arpspoof

The next example configuration does not do unicast detebtibmonitors ARP mapping for hosts 192.168.40.1 and
192.168.40.2.

preprocessor arpspoof
preprocessor arpspoof_detect_host: 192.168.40.1 f0:0f: 00:f0:0f:00
preprocessor arpspoof _detect_host: 192.168.40.2 f0:0f: 00:f0:0f:01

74

The third example configuration has unicast detection ekbl

preprocessor arpspoof; -unicast
preprocessor arpspoof_detect host; 192.168.40.1 f0:0f; 00:0:0f:00
preprocessor arpspoof_detect_host: 192.168.40.2 f0:0f: 00:f0:0f:01

2.2.14 DCE/RPC 2 Preprocessor

The main purpose of the preprocessor is to perform SMB desatation and DCE/RPC defragmentation to avoid
rule evasion using these techniques. SMB desegmentatiperisrmed for the following commands that can be
used to transport DCE/RPC requests and respor8et , Write Block Raw , Write and Close , Write AndX ,
Transaction , Transaction Secondary , Read, Read Block Raw andRead AndX. The following transports are sup-
ported for DCE/RPC: SMB, TCP, UDP and RPC over HTTP v.1 praxy server. New rule options have been im-
plemented to improve performance, reduce false positimesreduce the count and complexity of DCE/RPC based
rules.

Dependency Requirements

For proper functioning of the preprocessor:

e Thedcerpc preprocessor (the initial iteration) must be disabled.

e Stream session tracking must be enabled siream5 . The preprocessor requires a session tracker to keep its
data.

e Stream reassembly must be performed for TCP sessionsslfi@édided that a session is SMB or DCE/RPC, ei-
ther through configured ports, servers or autodetectirgidérpc2 preprocessor will enable stream reassembly
for that session if necessary.

¢ |P defragmentation should be enabled, i.e.ftag8 preprocessor should be enabled and configured.

Target Based

There are enough important differences between WindowsSamnaba versions that a target based approach has been
implemented. Some important differences:

Named pipe instance tracking

A combination of valid login handle or UID, share handle oDTdnd file/named pipe handle or FID must be
used to write data to a named pipe. The binding between teetepiendent on OS/software version.

Samba 3.0.22 and earlier

Any valid UID and TID, along with a valid FID can be used to makeequest, however, if the TID
used in creating the FID is deleted (via a tree disconndut) HID that was created using this TID
becomes invalid, i.e. no more requests can be written tataed pipe instance.

Samba greater than 3.0.22

Any valid TID, along with a valid FID can be used to make a rexjuélowever, only the UID used
in opening the named pipe can be used to make a request usifg@hhandle to the named pipe
instance. If the TID used to create the FID is deleted (vi@a tlisconnect), the FID that was created
using this TID becomes invalid, i.e. no more requests caniiittew to that named pipe instance. If
the UID used to create the named pipe instance is deleted wigoff AndX), since it is necessary
in making a request to the named pipe, the FID becomes invalid

Windows 2003

75

Windows XP
Windows Vista

These Windows versions require strict binding between ttiz UID and FID used to make a request
to a named pipe instance. Both the UID and TID used to opendheed pipe instance must be
used when writing data to the same named pipe instance. fbherdeleting either the UID or TID
invalidates the FID.

Windows 2000

Windows 2000 is interesting in that the first request to a riapige must use the same binding as that
of the other Windows versions. However, requests afterftilmw the same binding as Samba 3.0.22
and earlier, i.e. no binding. It also follows Samba gredtant3.0.22 in that deleting the UID or TID
used to create the named pipe instance also invalidates it.

Accepted SMB commands

Samba in particular does not recognize certain commandsramiPC$ tree.

Samba (all versions)

Under anlPC$ tree, does not accept:
Open
Write And Close
Read
Read Block Raw
Write Block Raw

Windows (all versions)
Accepts all of the above commands undeiRCH tree.

AndX command chaining

Windows is very strict in what command combinations it akote be chained. Samba, on the other hand, is
very lax and allows some nonsensical combinations, e.gtipfeilogins and tree connects (only one place to
return handles for these), login/logoff and tree conned/tlisconnect. Ultimately, we don’t want to keep track
of data that the server won't accept. An evasion possihilibyild be accepting a fragment in a request that the
server won't accept that gets sandwiched between an exploit

Transaction tracking

The differences betweenTaansaction request and using one of tiérite* commands to write data to a
named pipe are that (1) Bansaction performs the operations of a write and a read from the namgee, pi
whereas in using th@&/rite* commands, the client has to explicitly send one ofRked* requests to tell the
server to send the response and (Z)amsaction request is not written to the named pipe until all of the data i
received (via potentidlransaction Secondary requests) whereas with thi¢ite* commands, data is written

to the named pipe as it is received by the server. Multiple3aation requests can be made simultaneously to
the same named pipe. These requests can also be segmehtédhmsdction Secondary commands. What
distinguishes them (when the same named pipe is being wiitte.e. having the same FID) are fields in the
SMB header representing a process id (PID) and multipleMid]). The PID represents the process this request
is a part of. An MID represents different sub-processesiwitghprocess (or under a PID). Segments for each
"thread” are stored separately and written to the named pipen all segments are received. It is necessary to
track this so as not to munge these requests together (whialdwe a potential evasion opportunity).

Windows (all versions)

Uses a combination of PID and MID to define a "thread”.
Samba (all versions)

Uses just the MID to define a "thread”.

76

Multliple Bind requests

A Bind request is the first request that must be made in a conneatiented DCE/RPC session in order to
specify the interface/interfaces that one wants to compataiwith.

Windows (all versions)

For all of the Windows versions, only ori@nd can ever be made on a session whether or not it
succeeds or fails. Any binding after that must useAher Context request. If anotheBind is
made, all previous interface bindings are invalidated.

Samba 3.0.20 and earlier
Any amount ofBind requests can be made.

Samba later than 3.0.20

AnotherBind request can be made if the first failed and no interfaces wereessfully bound to. If
aBind after a successfillind is made, all previous interface bindings are invalidated.

DCE/RPC Fragmented requests - Context ID

Each fragment in a fragmented request carries the contexXttite bound interface it wants to make the request
to.

Windows (all versions)
The context id that is ultimately used for the request is amd in the first fragment. The context id
field in any other fragment can contain any value.

Samba (all versions)
The context id that is ultimately used for the request is aimrd in the last fragment. The context id
field in any other fragment can contain any value.

DCE/RPC Fragmented requests - Operation number

Each fragment in a fragmented request carries an operatiotbar (opnum) which is more or less a handle to
a function offered by the interface.

Samba (all versions)
Windows 2000
Windows 2003

Windows XP
The opnum that is ultimately used for the request is conthinghe last fragment. The opnum field
in any other fragment can contain any value.

Windows Vista
The opnum that is ultimately used for the request is conthinghe first fragment. The opnum field
in any other fragment can contain any value.

DCE/RPC Stub data byte order

The byte order of the stub data is determined differentlyfimdows and Samba.

Windows (all versions)
The byte order of the stub data is that which was used ilBitite request.

Samba (all versions)
The byte order of the stub data is that which is used in thegstgarrying the stub data.

77

Configuration

Thedcerpc2 preprocessor has a global configuration and one or morersssuéigurations. The global preprocessor
configuration name idcerpc2 and the server preprocessor configuration nandeggc2 _server .

Global Configuration

preprocessor dcerpc2

The globaldcerpc2 configuration is required. Only one gloldgerpc2 configuration can be specified.

Option syntax

| Option | Argument | Required| Default

memcap <memcap> NO memcap 102400
disable _defrag NONE NO OFF
max frag _len <max-frag-len> NO OFF
events <events> NO OFF
reassemble _threshold <re-thresh> NO OFF
disabled NONE NO OFF

memcap = 1024-4194303 (kilobytes)

max-frag-len = 1514-65535

events = pseudo-event | event | [event-list]

pseudo-event = "none" | "all"

event-list = event | event ', event-list

event = "memcap" | "smb" | "co" | "cl

re-thresh = 0-65535

Option explanations

memcap

Specifies the maximum amount of run-time memory that canlbeatkd. Run-time memory includes any
memory allocated after configuration. Default is 100 MB.

disabled

Disables the preprocessor. By default this value is turried/dhen the preprocessor is disabled only the
memcap option is applied when specified with the configunatio

disable _defrag
Tells the preprocessor not to do DCE/RPC defragmentatiefaddt is to do defragmentation.
max_frag _len

Specifies the maximum fragment size that will be added to #feagmention module. If a fragment is
greater than this size, it is truncated before being add¢utdefragmentation module. Default is not set.

events

Specifies the classes of events to enable. (See Eventssfectam enumeration and explanation of events.)

memcap

Only one event. If the memcap is reached or exceeded, alert.
smb

Alert on events related to SMB processing.

78

co

Stands for connection-oriented DCE/RPC. Alert on everiddad to connection-oriented DCE/RPC
processing.

cl

Stands for connectionless DCE/RPC. Alert on events reltesbnnectionless DCE/RPC pro-
cessing.

reassemble _threshold

Specifies a minimum number of bytes in the DCE/RPC desegitiemsand defragmentation buffers before
creating a reassembly packet to send to the detection enfiiieoption is useful in inline mode so as to
potentially catch an exploit early before full defragmeiaiais done. A value of 0 supplied as an argument
to this option will, in effect, disable this option. Defaigtdisabled.

Option examples

memcap 30000

max_frag_len 16840

events none

events all

events smb

events co

events [co]

events [smb, co]

events [memcap, smb, co, cl]
reassemble_threshold 500

Configuration examples

preprocessor dcerpc2
preprocessor dcerpc2: memcap 500000

preprocessor dcerpc2: max_frag_len 16840, memcap 300000, events smb
preprocessor dcerpc2: memcap 50000, events [memcap, smb, c o, cl], max_frag_len 14440
preprocessor dcerpc2: disable_defrag, events [memcap, sm b]

preprocessor dcerpc2: reassemble_threshold 500
Default global configuration

preprocessor dcerpc2: memcap 102400

Server Configuration

preprocessor dcerpc2_server

Thedcerpc2 _server configuration is optional. Alcerpc2 _server configuration must start witdefault — or net
options. Thalefault andnet options are mutually exclusive. At most one default configion can be specified. If
nodefault configuration is specified, default values will be used fardéfault configuration. Zero or moreet
configurations can be specified. For alogrpc2 _server configuration, if non-required options are not specified, th
defaults will be used. When processing DCE/RPC trafficddiault configuration is used if no net configurations
match. If anet configuration matches, it will override thiefault configuration. Anet configuration matches if the
packet’s server IP address matches an IP address or nefiesgh@tithenet configuration. Thewet option supports
IPv6 addresses. Note that port and ip variables definegbiiconf ~ CANNOT be used.

Option syntax

79

Option Argument | Required| Default
default NONE YES NONE
net <net> YES NONE
policy <policy> NO policy WinXP
detect <detect> NO detect [smb [139,445], tcp 135,
udp 135, rpc-over-http-server
593]
autodetect <detect> NO autodetect [tcp 1025:, udp 1025:,
rpc-over-http-server 1025:]
no_autodetect _http _proxy _ports NONE NO DISABLED (The preprocessor autodeteq
on all proxy ports by default)
smb_invalid _shares <shares> NO NONE
smb_max_chain <max-chain> NO smb_max_chain 3
net =ip | T ip-list T
ip-list =ip | ip ') ip-list
ip = ip-addr | ip-addr /' prefix | ip4-addr '/’ netmask
ip-addr = ip4-addr | ip6-addr
ip4-addr = a valid IPv4 address
ip6-addr = a valid IPv6 address (can be compressed)
prefix = a valid CIDR
netmask = a valid netmask
policy = "Win2000" | "Win2003" | "WinXP" | "WinVista" |
"Samba" | "Samba-3.0.22" | "Samba-3.0.20"
detect = "none" | detect-opt | [detect-list T
detect-list = detect-opt | detect-opt ', detect-list
detect-opt = transport | transport port-item |
transport [port-list]’
transport = "smb" | "tcp" | "udp" | "rpc-over-http-proxy" |
"rpc-over-http-server"
port-list = port-item | port-item ', port-list
port-item = port | port-range
port-range = " port | port ' | port ' port
port = 0-65535
shares = share | [share-list 7
share-list = share | share ' share-list
share = word | ™ word ™ | ™ var-word ™
word = graphical ascii characters except ') ™ | T '$
var-word = graphical ascii characters except ' ™ T T
max-chain = 0-255

Because the Snort main parser treats '$’ as the start of ahlarand tries to expand it, shares with '$’ must be
enclosed quotes.

Option explanations

default

Specifies that this configuration is for the default serverfigmration.

net
Specifies that this configuration is an IP or net specific comdiion. The configuration will only apply to
the IP addresses and nets supplied as an argument.

policy
Specifies the target-based policy to use when processirfgudes "WinXP”.

detect

Specifies the DCE/RPC transport and server ports that shmuttetected on for the transport. Defaults
are ports 139 and 445 for SMB, 135 for TCP and UDP, 593 for RP& BM TP server and 80 for RPC

over HTTP proxy.

80

autodetect

Specifies the DCE/RPC transport and server ports that thrgwessor should attempt to autodetect on
for the transport. The autodetect ports are only queried ifletect transport/ports match the packet. The
order in which the preprocessor will attempt to autodeteititbe - TCP/UDP, RPC over HTTP server,
RPC over HTTP proxy and lastly SMB. Note that most dynamic IRFEC ports are above 1024 and ride
directly over TCP or UDP. It would be very uncommon to see SMBaaything other than ports 139 and
445. Defaults are 1025-65535 for TCP, UDP and RPC over HTT\Rse

no_autodetect _http _proxy _ports

By default, the preprocessor will always attempt to autecgbr ports specified in the detect configuration
for rpc-over-http-proxy. This is because the proxy is likalweb server and the preprocessor should not
look at all web traffic. This option is useful if the RPC over FH proxy configured with the detect option
is only used to proxy DCE/RPC traffic. Default is to autodetetRPC over HTTP proxy detect ports.

smb_invalid _shares

Specifies SMB shares that the preprocessor should alertasnaftempt is made to connect to them via a
Tree Connect orTree Connect AndX . Defaultis empty.

smb_max_chain

Specifies the maximum amount of AndX command chaining thallésved before an alert is generated.
Default maximum is 3 chained commands. A value of 0 disalblissaption.

Option examples

net 192.168.0.10

net 192.168.0.0/24

net [192.168.0.0/24]

net 192.168.0.0/255.255.255.0

net feab:45b3:ab92:8ac4:d322:007f.e5aa:7845
net feah:45h3:ah92:8ac4:d322:007f.e5aa:7845/128
net feah:45b3::/32

net [192.168.0.10, feah:45b3::/32]

net [192.168.0.0/24, feah:45h3:ab92:8ac4:d322:007f:e5 aa:7845]
policy Win2000

policy Samba-3.0.22

detect none

detect smb

detect [smb]

detect smb 445

detect [smb 445]

detect smb [139,445]

detect [smb [139,445]]

detect [smb, tcp]

detect [smb 139, tcp [135,2103]]

detect [smb [139,445], tcp 135, udp 135, rpc-over-http-ser ver [593,6002:6004]]
autodetect none

autodetect tcp

autodetect [tcp]

autodetect tcp 2025:

autodetect [tcp 2025:]

autodetect tcp [2025:3001,3003:]

autodetect [tcp [2025:3001,3003:]]

autodetect [tcp, udp]

autodetect [tcp 2025:, udp 2025:]

autodetect [tcp 2025:, udp, rpc-over-http-server [1025:6 001,6005:]]
smb_invalid_shares private

smb_invalid_shares "private”

smb_invalid_shares "C$"

smb_invalid_shares [private, "C$"]
smb_invalid_shares ["private”, "C$"]
smb_max_chain 1

81

Configuration examples

preprocessor dcerpc2_server: \
default

preprocessor dcerpc2_server: \
default, policy Win2000

preprocessor dcerpc2_server: \
default, policy Win2000, detect [smb, tcp], autodetect tcp 1025:, \
smb_invalid_shares ['C$", "D$", "ADMIN$"]

preprocessor dcerpc2_server: net 10.4.10.0/24, policy Wi n2000

preprocessor dcerpc2_server: \
net [10.4.10.0/24,feab:45b3::/126], policy WinVista, sm b_max_chain 1

preprocessor dcerpc2_server: \
net [10.4.10.0/24,feab:45b3::/126], policy WinVista, \
detect [smb, tcp, rpc-over-http-proxy 8081],
autodetect [tcp, rpc-over-http-proxy [1025:6001,6005:] 1\
smb_invalid_shares ['C$", "ADMIN$"], no_autodetect_htt p_proxy_ports

preprocessor dcerpc2_server: \
net [10.4.11.56,10.4.11.57], policy Samba, detect smb, au todetect none

Default server configuration

preprocessor dcerpc2_server: default, policy WinXP, \
detect [smb [139,445], tcp 135, udp 135, rpc-over-http-ser ver 593, \
autodetect [tcp 1025:, udp 1025:, rpc-over-http-server 10 25:], smb_max_chain 3

Completedcerpc2 default configuration

preprocessor dcerpc2: memcap 102400

preprocessor dcerpc2_server: \
default, policy WinXP, \
detect [smb [139,445], tcp 135, udp 135, rpc-over-http-ser ver 593, \
autodetect [tcp 1025:, udp 1025:, rpc-over-http-server 10 25:], smb_max_chain 3

Events

The preprocessor uses GID 133 to register events.

Memcap events

SID | Description
1 | If the memory cap is reached and the preprocessor is configaraert.

SMB events

SID | Description

2 | Aninvalid NetBIOS Session Service type was specified in #eder. Valid types arédessage,
Request (only from client), Positive Response (only from server),Negative Response
(only from server)Retarget Response (only from server) andkeep Alive
3 | An SMB message type was specified in the header. Either asegas made by the server ona
response was given by the client.

82

The SMB id does not equajxffSMB . Note that since the preprocessor does not yet sup
SMB2, id of \xfeSMB s turned away before an eventable point is reached.

port

The word count of the command header is invalid. SMB commduade pretty specific worg
counts and if the preprocessor sees a command with a word toatndoesn't jive with that
command, the preprocessor will alert.

Some commands require a minimum number of bytes after thermaomd header. If a comman
requires this and the byte count is less than the minimumiredjbyte count for that commang
the preprocessor will alert.

Some commands, especially the commands from the SMB Coremngntation require a dat
format field that specifies the kind of data that will be comimext. Some commands require
specific format for the data. The preprocessor will aleté format is not that which is expectg
for that command.

Many SMB commands have a field containing an offset from thygriveng of the SMB header t
where the data the command is carrying starts. If this ofisét us before data that has alrea
been processed or after the end of payload, the preprocsikalert.

Some SMB commands, such &sansaction , have a field containing the total amount of data

to be transmitted. If this field is zero, the preprocessoralirt.

10

The preprocessor will alert if the NetBIOS Session Sengegth field contains a value less th
the size of an SMB header.

an

11

The preprocessor will alert if the remaining NetBIOS padkeigth is less than the size of th
SMB command header to be decoded.

e

12

The preprocessor will alert if the remaining NetBIOS padkeigth is less than the size of th
SMB command byte count specified in the command header.

e

13

The preprocessor will alert if the remaining NetBIOS padkeigth is less than the size of tH
SMB command data size specified in the command header.

e

14

The preprocessor will alert if the total data count specifiethe SMB command header is le
than the data size specified in the SMB command header. (@atal count must always b
greater than or equal to current data size.)

5S

D

15

The preprocessor will alert if the total amount of data serat fransaction is greater than the to
data count specified in the SMB command header.

tal

16

The preprocessor will alert if the byte count specified in B command header is less th
the data size specified in the SMB command. (The byte count ahays be greater than g
equal to the data size.)

AN

=

17

Some of the Core Protocol commands (from the initial SMB ienpéntation) require that th
byte count be some value greater than the data size exadity.piieprocessor will alert if the
byte count minus a predetermined amount based on the SMB aoohia not equal to the dat
size.

18

FortheTree Connect command (and notthBee Connect AndX command),the preprocess
has to queue the requests up and wait for a server respons¢etonihe whether or not an IP
share was successfully connected to (which is what the pecepsor is interested in). Unlikj
the Tree Connect AndX response, there is no indication in thiee Connect response as t¢
whether the share is IPC or not. There should be under noiingahastances no more than a feg
pending tree connects at a time and the preprocessor willitlbis number is excessive.

19

After a client is done writing data using thérite* commands, it issuesRead* command to
the server to tell it to send a response to the data it hasewrittn this case the preprocesg
is concerned with the server response. Read* request contains the file id associated wit
named pipe instance that the preprocessor will ultimatehdshe data to. The server respon
however, does not contain this file id, so it need to be queuttdthe request and dequeued wi
the response. If multiplBead* requests are sent to the server, they are responded to indee
they were sent. There should be under normal circumstarece®one than a few pendiriRead*
requests at a time and the preprocessor will alert if this lmems excessive.

or
na
se,
th
0

20

The preprocessor will alert if the number of chained comnsané single request is greater th

an

or equal to the configured amount (default is 3).

83

21

With AndX command chaining it is possible to chain multiSkssion Setup AndX commands

within the same request. There is, however, only one platiesrSMB header to return a login

handle (or Uid). Windows does not allow this behavior, hoerevamba does. This is anomalo
behavior and the preprocessor will alert if it happens.

22

With AndX command chaining it is possible to chain multipkee Connect AndX commands
within the same request. There is, however, only one platledrSMB header to return a treg
handle (or Tid). Windows does not allow this behavior, hogredamba does. This is anomalo
behavior and the preprocessor will alert if it happens.

23

When aSession Setup AndX request is sent to the server, the server responds (if teatg
successfully authenticates) which a user id or login han@les is used by the client in subs

guent requests to indicate that it has authenticatelhgaff AndX requestis sent by the client

to indicate it wants to end the session and invalidate thim lbgndle. With commands that a

us

us

U
]

[e

chained after &ession Setup AndX request, the login handle returned by the server is used for

the subsequent chained commands. The combinatioSexs®on Setup AndX command with
a chained.ogoff AndX command, essentially logins in and logs off in the same rsigared is
anomalous behavior. The preprocessor will alert if it sbés t

24

A Tree Connect AndX command is used to connect to a share. Tiee Disconnect com-
mand is used to disconnect from that share. The combinafiariTeee Connect AndX com-

mand with a chainedree Disconnect command, essentially connects to a share and discon-

nects from the same share in the same request and is anorbalwagor. The preprocessor wi
alert if it sees this.

25

An Open AndXor Nt Create AndX command is used to open/create a file or named pipe.

preprocessor is only interested in named pipes as this iss®@E/RPC requests are written tg.

TheClose command is used to close that file or named pipe. The combimafiaOpen AndX
orNt Create AndX command with a chainedlose command, essentially opens and closes

named pipe in the same request and is anomalous behavioprépecessor will alert if it sees

this.

26

The preprocessor will alert if it sees any of the invalid SMiases configured. It looks for
Tree Connect orTree Connect AndX to the share.

Connection-oriented DCE/RPC events

The

the

84

SID | Description

27 | The preprocessor will alert if the connection-oriented DRIEC major version contained in the
header is not equal to 5.

28 | The preprocessor will alert if the connection-oriented BREC minor version contained in the
header is not equal to 0.

29 | The preprocessor will alert if the connection-oriented DRIEC PDU type contained in the
header is not a valid PDU type.

30 | The preprocessor will alert if the fragment length definethmheader is less than the size of the
header.

31 | The preprocessor will alert if the remaining fragment léni less than the remaining packet
size.

32 | The preprocessor will alert if in Bind or Alter Context request, there are no context items
specified.

33 | The preprocessorwill alertifinBind orAlter Context request, there are no transfer syntaxes
to go with the requested interface.

34 | The preprocessor will alert if a non-last fragment is lessitthe size of the negotiated maximuym
fragment length. Most evasion techniques try to fragmeatdhata as much as possible and
usually each fragment comes well below the negotiated tnérssze.

35 | The preprocessor will alert if a fragment is larger than theximum negotiated fragment length.

36 | The byte order of the request data is determined by the Birmbimection-oriented DCE/RPC
for Windows. It is anomalous behavior to attempt to changeblyte order mid-session.

37 | The call id for a set of fragments in a fragmented requestlshaiay the same (it is incremented
for each complete request). The preprocessor will alettdfianges in a fragment mid-request.
38 | The operation number specifies which function the requestlisng on the bound interface. If
request is fragmented, this number should stay the samd faagments. The preprocessor wil
alert if the opnum changes in a fragment mid-request.

39 | The contextid is a handle to a interface that was bound tord§aest if fragmented, this numb
should stay the same for all fragments. The preprocessbaleit if the context id changes in
fragment mid-request.

= D

D
=

)

Connectionless DCE/RPC events

| SID | Description |

40 | The preprocessor will alert if the connectionless DCE/RP4jomversion is not equal to 4.

41 | The preprocessor will alert if the connectionless DCE/REG fype is not a valid pdu type.
42 | The preprocessor will alert if the packet data length is tess the size of the connectionless
header.
43 | The preprocessor will alert if the sequence number uses @gaest is the same or less than a
previously used sequence number on the session. In teatiagping the sequence number space
produces strange behavior from the server, so this shoutdhsidered anomalous behavior.

Rule Options

New rule options are supported by enabling dherpc2 preprocessor:

dce_iface
dce_opnum
dce_stub_data

New modifiers to existingyte _test andbyte _jump rule options:

byte test: dce
byte_jump: dce

dce _iface

For DCE/RPC based rules it has been necessary to set flowdstsd on a client bind to a service to avoid
false positives. It is necessary for a client to bind to a iserbefore being able to make a call to it. When a
client sends a bind request to the server, it can, howevecjfypone or more service interfaces to bind to. Each
interface is represented by a UUID. Each interface UUID isqubwith a unique index (or context id) that future
requests can use to reference the service that the clierdkénma call to. The server will respond with the
interface UUIDs it accepts as valid and will allow the cli¢gmtmake requests to those services. When a client
makes a request, it will specify the context id so the servemks what service the client is making a request
to. Instead of using flow-bits, a rule can simply ask the ppepssor, using this rule option, whether or not the
client has bound to a specific interface UUID and whether drtinig client request is making a request to it.
This can eliminate false positives where more than one sefigibound to successfully since the preprocessor
can correlate the bind UUID to the context id used in the reju& DCE/RPC request can specify whether
numbers are represented as big endian or little endian. @hesentation of the interface UUID is different
depending on the endianness specified in the DCE/RPC psdyimguiring two rules - one for big endian and

85

one for little endian. The preprocessor eliminates the tieetvo rules by normalizing the UUID. An interface
contains a version. Some versions of an interface may notilmerable to a certain exploit. Also, a DCE/RPC
request can be broken up into 1 or more fragments. Flags (&aftlén the connectionless header) are set in the
DCE/RPC header to indicate whether the fragment is the &irstiddle or the last fragment. Many checks for
data in the DCE/RPC request are only relevant if the DCE/RRQest is a first fragment (or full request), since
subsequent fragments will contain data deeper into the BEE/request. A rule which is looking for data,
say 5 bytes into the request (maybe it's a length field), wellldioking at the wrong data on a fragment other
than the first, since the beginning of subsequent fragmeatsleeady offset some length from the beginning of
the request. This can be a source of false positives in fratgdeDCE/RPC traffic. By default it is reasonable
to only evaluate if the request is a first fragment (or fulluegt). However, if thany _frag option is used to
specify evaluating on all fragments.

Syntax
<uuid> [', <operator> <version>] [', "any_frag"]
uuid = hexlong '-" hexshort - hexshort -* 2hexbyte -’ 6he xbyte
hexlong = 4hexbyte
hexshort = 2hexbyte
hexbyte = 2HEXDIGIT
operator =< | > | = |0
version = (0-65535
Examples

dce_iface: 4b324fc8-1670-01d3-1278-5a47hf6eel88;

dce_iface: 4b324fc8-1670-01d3-1278-5a47hf6ee188,<2;

dce_iface: 4b324fc8-1670-01d3-1278-5a47bf6eel88,any_ frag;
dce_iface: 4b324fc8-1670-01d3-1278-5a47hf6eel88,=1,a ny_frag;

This option is used to specify an interface UUID. Optionguanents are an interface version and operator to
specify that the version be less thar:{j, greater than (>"), equal to ('=") or not equal to ('!") the version
specified. Also, by default the rule will only be evaluatedddirst fragment (or full request, i.e. not a fragment)
since most rules are written to start at the beginning of aest] Theany _frag argument says to evaluate for
middle and last fragments as well. This option requireskiragclientBind andAlter Context requests as
well as serveBind Ack andAlter Context responses for connection-oriented DCE/RPC in the prepsmre
For eachBind andAlter Context request, the client specifies a list of interface UUIDs aluaiitlp a handle

(or context id) for each interface UUID that will be used sgrthe DCE/RPC session to reference the interface.
The server response indicates which interfaces it willvaltbe client to make requests to - it either accepts
or rejects the client’s wish to bind to a certain interfacehisTtracking is required so that when a request is
processed, the context id used in the request can be cedeldth the interface UUID it is a handle for.

hexlong andhexshort will be specified and interpreted to be in big endian ordeis(th usually the default
way an interface UUID will be seen and represented). As ameig, the following Messenger interface UUID
as taken off the wire from a little endi@ind request:

[f8 91 7b 5a 00 ff d0 11 a9 b2 00 cO 4f b6 e6 fc|

must be written as:
5a7h91f8-ff00-11d0-a9b2-00c04th6ebfc

The same UUID taken off the wire from a big endBind request:
|5a 7b 91 f8 ff 00 11 dO a9 b2 00 cO 4f b6 e6 fc|

must be written the same way:

5a7h91f8-ff00-11d0-a9b2-00c04fb6ebfc

86

This option matches if the specified interface UUID matclhesinterface UUID (as referred to by the context
id) of the DCE/RPC request and if supplied, the version dpmras true. This option will not match if the
fragment is not a first fragment (or full request) unlessamme_frag option is supplied in which case only the
interface UUID and version need match. Note that a defrageaeDCE/RPC request will be considered a full
request.

ANOTE

Using this rule option will automatically insert fast patiecontents into the fast pattern matcher. For UDP
rules, the interface UUID, in both big and little endian fatvill be inserted into the fast pattern matcher.
For TCP rules, (1) if the rule optioffow:to _server|from _client is used|05 00 00 will be inserted into
the fast pattern matcher, (2) if the rule optilow:from _serverfto _client is used,|05 00 02 will be

inserted into the fast pattern matcher and (3) if the flowtiknown, |05 0J will be inserted into the fast
pattern matcher. Note that if the rule already has contdataptions in it, the best (meaning longest) pattern
will be used. If a content in the rule uses thst _pattern rule option, it will unequivocally be used ove
the above mentioned patterns.

=

dce _opnum

The opnum represents a specific function call to an interfafeer is has been determined that a client has
bound to a specific interface and is making a request to it dbese -dce _iface) usually we want to know
what function call it is making to that service. It is likelyat an exploit lies in the particular DCE/RPC function

call.
Syntax
<opnum-list>
opnum-list = opnum-item | opnum-item ’;’ opnum-list
opnum-item = opnum | opnum-range
opnum-range = opnum -’ opnum
opnum = 0-65535
Examples

dce_opnum: 15;
dce_opnum; 15-18;
dce_opnum: 15,18-20;
dce_opnum: 15,17,20-22;

This option is used to specify an opnum (or operation numimgmum range or list containing either or both

opnum and/or opnum-range. The opnum of a DCE/RPC requddtewhatched against the opnums specified
with this option. This option matches if any one of the opnwapscified match the opnum of the DCE/RPC
request.

dce _stub _data

Since most netbios rules were doing protocol decoding anlyet to the DCE/RPC stub data, i.e. the remote
procedure call or function call data, this option will aliete this need and place the cursor at the beginning of
the DCE/RPC stub data. This reduces the number of rule opkieoks and the complexity of the rule.

This option takes no arguments.
Example
dce_stub_data;
This option is used to place the cursor (used to walk the gamk@oad in rules processing) at the beginning

of the DCE/RPC stub data, regardless of preceding rule ogtidhere are no arguments to this option. This
option matches if there is DCE/RPC stub data.

87

byte _test andbyte _jump

A DCE/RPC request can specify whether numbers are repegsanbig or little endian. These rule options will
take as a new argumedte and will work basically the same as the norrhgte _test /byte _jump, but since
the DCE/RPC preprocessor will know the endianness of theasgit will be able to do the correct conversion.

byte _test

Syntax

<convert> ') ['I' | <operator> *; <value> [*, <offset> [*
'’ "dce"”

convert =1 | 2 | 4
operator =< |'= | > | & |7
value = 0-4294967295
offset = -65535 to 65535

Examples

byte_test: 4,>,35000,0,relative,dce;
byte_test: 2,!=,2280,-10,relative,dce;

;' "relative”] \

When using thaelce argument to dyte _test , the following normalbyte _test

allowed:big , little , string , hex, dec andoct .
byte _jump
Syntax
<convert> ', <offset> [' "relative"] [', "multiplier"
[') "align"] [, "post_offet" <adjustment-value>]’ "
convert =1|2]|4
offset = -65535 to 65535
mult-value = 0-65535
adjustment-value = -65535 to 65535
Example

byte_jump:4,-4,relative,align,multiplier 2,post_offs

<mult-value>] \
dce"

et -4,dce;

arguments will not be

When using thelce argument to éyte _jump, the following normabyte _jump arguments will not be

allowed:big , little , string

Example of rule complexity reduction

, hex, dec, oct andfrom _beginning

The following two rules using the new rule options replacg$=2t and isset flowbit) rules that are necessary if

the new rule options are not used:

alert tcp $SEXTERNAL_NET any -> $HOME_NET [135,139,445,593
(msg:"dns R_Dnssrv funcs2 overflow attempt"; flow:establ
dce_iface:50abc2a4-574d-40b3-9d66-ee4fd5fba076; dce_
pere:"/".{12}(\x00\x00\x00\x00|.{12})/sR"; byte_jump
byte_test:4,>,256,4,relative,dce; reference:bugtrag,
classtype:attempted-admin; sid:1000068;)

alert udp $EXTERNAL_NET any -> $HOME_NET [135,1024:] \
(msg:"dns R_Dnssrv funcs2 overflow attempt"; flow:establ
dce_iface:50abc2a4-574d-40b3-9d66-ee4fd5fba076; dce_
pere:"/".{12}(\x00\x00\x00\x00|.{12})/sR"; byte_jump
byte_test:4,>,256,4,relative,dce; reference:bugtrag,
classtype:attempted-admin; sid:1000069;)

2.2.15 Sensitive Data Preprocessor

,1024:] 1\
ished,to_server; \
opnum:0-11; dce_stub_data; \
:4,-4 relative,align,dce; \
23470; reference:cve,2007-1748; \

ished,to_server; \
opnum:0-11; dce_stub_data; \
4,4 relative,align,dce; \
23470; reference:cve,2007-1748; \

The Sensitive Data preprocessor is a Snort module that ppesfdetection and filtering of Personally Identifiable
Information (PII). This information includes credit cardmbers, U.S. Social Security numbers, and email addresses.
A limited regular expression syntax is also included for wiefy your own PII.

88

Dependencies

The Stream5 preprocessor must be enabled for the SensaizedPeprocessor to work.

Preprocessor Configuration

Sensitive Data configuration is split into two parts: thegooeessor config, and the rule options. The preprocessor
config starts with:

preprocessor sensitive_data:

Option syntax

| Option | Argument | Required| Default
alert _threshold <number> NO alert _threshold 25
mask_output NONE NO OFF
ssn _file <filename> NO OFF
alert_threshold = 1 - 4294067295

Option explanations

alert _threshold

The preprocessor will alert when any combination of PIl as&edted in a session. This option specifies
how many need to be detected before alerting. This shouléti@gher than the highest individual count
in your "sd_pattern” rules.

mask_output

This option replaces all but the last 4 digits of a detectddvirh "X"s. This is only done on credit card &
Social Security numbers, where an organization’s reqaiatimay prevent them from seeing unencrypted
numbers.

ssn _file

A Social Security number is broken up into 3 sections: ArediBts), Group (2 digits), and Serial (4
digits). On a monthly basis, the Social Security Administra publishes a list of which Group numbers
are in use for each Area. These numbers can be updated int8nsupplying a CSV file with the new
maximum Group numbers to use. By default, Snort recognine@bSecurity numbers issued up through
November 2009.

Example preprocessor config

preprocessor sensitive_data: alert_threshold 25 \
mask_output \
ssn_file ssn_groups_Jan10.csv

Rule Options

Snort rules are used to specify which Pl the preprocessouldhook for. A new rule option is provided by the
preprocessor:

sd_pattern

89

This rule option specifies what type of Pll a rule should detec

Syntax

sd_pattern: <count>,<pattern>

count = 1-255
pattern = any string

Option Explanations

count

This dictates how many times a PIl pattern must be matchedrfalert to be generated. The count is
tracked across all packets in a session.

pattern

This is where the pattern of the PII gets specified. There & duilt-in patterns to choose from:
credit _card

The "creditcard” pattern matches 15- and 16-digit credit card numb@tsese numbers may
have spaces, dashes, or nothing in between groups. Thisscdiga, Mastercard, Discover, and
American Express. Credit card numbers matched this way therecheck digits verified using
the Luhn algorithm.

us _social

This pattern matches against 9-digit U.S. Social Secutityloers. The SSNs are expected to
have dashes between the Area, Group, and Serial sections.
SSNs have no check digits, but the preprocessor will chedkhaa against the list of currently
allocated group numbers.

us_social _nodashes
This pattern matches U.S. Social Security numbers withashds separating the Area, Group,
and Serial sections.

email
This pattern matches against email addresses.

If the pattern specified is not one of the above built-in pagethen it is the definition of a custom PII
pattern. Custom PII types are defined using a limited regge-syntax. The following special characters
and escape sequences are supported:

\d matches any digit

\D matches any non-digit

\l matches any letter

\L matches any non-letter

\w matches any alphanumeric character

\W | matches any non-alphanumeric character
{num} | used to repeat a character or escape sequence "num” timampéx
"{3}" matches 3 digits.
? makes the previous character or escape sequence optiaaaipke: ”
?” matches an optional space. This behaves in a greedy manner
\\ matches a backslash

\{,\} | matcheq and}

\? | matches a question mark.
Other characters in the pattern will be matched literally.

ANOTE

‘ Unlike PCRE,\win this rule option does NOT match underscores.

90

Examples
sd_pattern: 2,us_social,

Alerts when 2 social security numbers (with dashes) appeassiession.
sd_pattern: 5,(\d{3h\d{3}-\d{4};

Alerts on 5 U.S. phone numbers, following the format (1284890
Whole rule example:

alert tcp SHOME_NET $HIGH_PORTS -> $EXTERNAL_NET $SMTP_P®TS \
(msg:"Credit Card numbers sent over email”; gid:138; sid:1 000; rev:1; \
sd_pattern:4,credit_card; metadata:service smtp;)

Caveats

sd _pattern is not compatible with other rule options. Trying to use aothde options withsd _pattern
will result in an error message.
Rules usingd _pattern must use GID 138.

2.3 Decoder and Preprocessor Rules

Decoder and preprocessor rules allow one to enable andlelidaboder and preprocessor events on a rule by rule
basis. They also allow one to specify the rule type or actfaecoder or preprocessor event on a rule by rule basis.

Decoder config options will still determine whether or notgenerate decoder events. For exampleoiffig
disable _decode _alerts is insnort.conf , decoder events will not be generated regardless of whetheot there
are corresponding rules for the event. Also note that if theodler is configured to enable drops, emnfig
enable _decode _drops , these options will take precedence over the event typeeofitte. A packet will be dropped
if either a decoder config drop option issnort.conf or the decoder or preprocessor rule typérizp . Of course,
the drop cases only apply if Snort is running inline. 8e&README.decode for config options that control decoder
events.

2.3.1 Configuring
The following options to configure will enable decoder anéocessor rules:
$.Jconfigure --enable-decoder-preprocessor-rules

The decoder and preprocessor rules are located iprdpeoc _rules/ directory in the top level source tree, and
have the namedecoder.rules andpreprocessor.rules respectively. These files are updated as new decoder and
preprocessor events are added to Snort.

To enable these rules snort.conf , define the path to where the rules are located and uncomhentlitide lines
in snort.conf that reference the rules files.

var PREPROC_RULE_PATH /path/to/preproc_rules

include $PREPROC_RULE_PATH/preprocessor.rules
include $PREPROC_RULE_PATH/decoder.rules

To disable any rule, just comment it with#aor remove the rule completely from the file (commenting isoree
mended).

To change the rule type or action of a decoder/preprocessmrjust replacalert with the desired rule type. Any
one of the following rule types can be used:

91

alert
log
pass
drop
sdrop
reject

For example one can change:

alert (msg: "DECODE_NOT_IPV4 DGRAM"; sid: 1; gid: 116; rev LN
metadata: rule-type decode ; classtype:protocol-command -decode;)
to
drop (msg: "DECODE_NOT_IPV4 DGRAM"; sid: 1; gid: 116; rev: 10\
metadata: rule-type decode ; classtype:protocol-command -decode;)

to drop (as well as alert on) packets where the Ethernet pobts IPv4 but version field in IPv4 header has a value
other than 4.

SeeREADME.decode, README.gre and the various preprocessor READMES for descriptionsefles indecoder.rules
andpreprocessor.rules

2.3.2 Reverting to original behavior

If you have configured snort to use decoder and preprocesks;, the following config option isnort.conf will
make Snort revert to the old behavior:

config autogenerate_preprocessor_decoder_rules

Note that if you want to revert to the old behavior, you alseeéhto remove the decoder and preprocessor rules and
any reference to them frosmort.conf , otherwise they will be loaded. This option applies to rulesspecified and
the default behavior is to alert.

2.4 Event Processing
Snort provides a variety of mechanisms to tune event protgss suit your needs:

e Detection Filters
You can use detection filters to specify a threshold that mesixceeded before a rule generates an event. This
is covered in section 3.7110.

e Rate Filters
You can use rate filters to change a rule action when the nuatlyate of events indicates a possible attack.

e Event Filters

You can use event filters to reduce the number of logged ef@mgisy rules. This can be tuned to significantly
reduce false alarms.

e Event Suppression
You can completely suppress the logging of uninterstingntsze

92

2.4.1 Rate Filtering

rate filter provides rate based attack prevention by allowing usersidigure a new action to take for a specified
time when a given rate is exceeded. Multiple rate filters cardéfined on the same rule, in which case they are
evaluated in the order they appear in the configuration fild,the first applicable action is taken.

Format

Rate filters are used as standalone configurations (outsaleuée) and have the following format:

rate_filter \
gen_id <gid>, sig_id <sid>, \
track <by_srclby_dst|by rule>, \
count <c>, seconds <s>, \
new_action alert|drop|pass|log|sdrop|reject, \
timeout <seconds> \
[, apply_to <ip-list>]

The options are described in the table below - all are reduaseeptpply _to , which is optional.

Option Description
track by _src | by _dst | rate is tracked either by source IP address, destinatioddireas, or by
by _rule rule. This means the match statistics are maintained fdn eaique

source IP address, for each unique destination IP addressey are
aggregated at rule level. For rules related to Stream5@esssource
and destination means client and server respectiviedigk by _rule
andapply _to may not be used together.

count ¢ the maximum number of rule matchessirseconds before the rate filter
limit to is exceededc must be nonzero value.
seconds s the time period over whicbount is accrued. 0 seconds meawsant is

a total count instead of a specific rate. For exampate, _filter ~ may

be used to detect if the number of connections to a specifiesekceed
a specific count. 0 seconds only applies to internal rules_{g4 35) and
other use will produce a fatal error by Snort.

new_action alert | drop | new_action replaces rule action fotr seconds. drop , reject , and

pass | log | sdrop | reject sdrop can be used only when snort is used in inline mostikop and
reject are conditionally compiled with GIDS.

timeout t revert to the original rule action aftér seconds. It is O, then rule

action is never reverted back. Ament _filter ~ may be used to manage
number of alerts after the rule action is enableddy _filter
apply _to <ip-list> restrict the configuration to only to source or destinatiBratdress (in-
dicated by track parameter) determineddgylist> . track by _rule
andapply _to may not be used together. Note that events are ggner-
ated during the timeout period, even if the rate falls belog/¢onfigured
limit.

Examples

Example 1 - allow a maximum of 100 connection attempts peorsgédrom any one IP address, and block further
connection attempts from that IP address for 10 seconds:

rate_filter \
gen_id 135, sig_id 1, \

93

track by src, \
count 100, seconds 1, \
new_action drop, timeout 10

Example 2 - allow a maximum of 100 successful simultaneonsections from any one IP address, and block further
connections from that IP address for 10 seconds:

rate_filter \
gen_id 135, sig_id 2, \
track by src, \
count 100, seconds 0, \
new_action drop, timeout 10

2.4.2 Event Filtering

Event filtering can be used to reduce the number of loggedsdler noisy rules by limiting the number of times a
particular event is logged during a specified time inter¥alis can be tuned to significantly reduce false alarms.

There are 3 types of event filters:

o limit
Alerts on the 1sin events during the time interval, then ignores events fordéisé of the time interval.

e threshold
Alerts everymtimes we see this event during the time interval.

e hoth

Alerts once per time interval after seeingoccurrences of the event, then ignores any additional ewdrring
the time interval.

Format

event_filter \
gen_id <gid>, sig_id <sid>, \
type <limit|threshold|both>, \
track <by_srclby_dst>, \
count <c>, seconds <s>

threshold \
gen_id <gid>, sig_id <sid>, \
type <limit|threshold|both>, \
track <by_srclby_dst>, \
count <c>, seconds <s>

threshold is an alias forevent _filter . Both formats are equivalent and support the options desdribelow - all
are requiredthreshold is deprecated and will not be supported in future releases.

ANOTE

Only oneevent _filter ~ may be defined for a givegen_id, sig _id . If more than onevent _filter is
applied to a specifigen _id, sig _id pair, Snort will terminate with an error while reading thenfiguration
information.

event filter s withsig _id O are considered "global” because they apply to all rule$ e givengen_id . If
gen_id is also 0, then the filter applies to all rulegeif_id 0, sig _id != 0 is not allowed). Standard filtering tests

94

Option Description

gen_id <gid> Specify the generator ID of an associated rgkn _id 0, sig _id 0 can be used
to specify a "global” threshold that applies to all rules.

sig _id <sid> Specify the signature ID of an associated rslg._id 0 specifies a "global” filter

because it appliesto aig -id s for the givergen_id .

type limit|threshold|both

typelimit alerts on the 1st m events during the time interval, thenrgsevents
for the rest of the time interval. Typthreshold alerts every m times we se
this event during the time interval. Tygeth alerts once per time interval afte
seeing m occurrences of the event, then ignores any adalittments during the
time interval.

D

=

track by _srclby _dst

rate is tracked either by source IP address, or destinafl@adtress. This mear
count is maintained for each unique source IP addressesy; eath unique desti
nation IP addresses. Ports or anything else are not tracked.

count ¢ number of rule matching in s seconds that will caagent _filter limit to be
exceededc must be nonzero value.
seconds s time period over whicltount is accrueds must be nonzero value.

are applied first, if they do not block an event from being ledgthe global filtering test is applied. Thresholds in a
rule (deprecated) will override a globafent _filter . Globalevent _filter s do not override what’s in a signature

or a more specific stand-aloeeent

ANOTE

_filter

of the timeout period is neve
user monitoring the network.

event filters can be used to suppress excessite filter alerts, however, the firsiew_action event

r suppressed. Such eventsateda change of state that are significant to the

Examples

Limit logging to 1 event per 60 seconds:

event filter \
gen_id 1, sig_id 1851, \
type limit, track by src,
count 1, seconds 60

Limit logging to every 3rd event:

event filter \
gen_id 1, sig_id 1852, \

\

type threshold, track by src, \

count 3, seconds 60
Limit logging to just 1 event per 6

event_filter \
gen_id 1, sig_id 1853, \
type both, track by src, \
count 30, seconds 60

0 seconds, but only if weead 30 events in 60 seconds:

Limit to logging 1 event per 60 seconds per IP triggering eab (rule genid is 1):

95

event_filter \
gen_id 1, sig_id 0, \
type limit, track by src, \
count 1, seconds 60

Limit to logging 1 event per 60 seconds per IP, triggeringeate for each event generator:

event filter \
gen_id 0, sig_id 0, \
type limit, track by src, \
count 1, seconds 60

Events in Snort are generated in the usual way, event fillerdandled as part of the output system. Read gen-
msg.map for details on gen ids.

Users can also configure a memcap for threshold with a “cdndigtion:

config event filter: memcap <bytes>

this is deprecated:
config threshold: memcap <bytes>

2.4.3 Event Suppression
Event suppression stops specified events from firing withembving the rule from the rule base. Suppression uses

an IP list to select specific networks and users for suppresSiuppression tests are performed prior to either standar
or global thresholding tests.

Suppression are standalone configurations that referemmrators, SIDs, and IP addresses via an IP list. This allows
a rule to be completely suppressed, or suppressed whenubatiee traffic is going to or coming from a specific IP
or group of IP addresses.

You may apply multiple suppressions to a non-zero SID. Yoy mlgo combine onevent filter and several
suppressions to the same non-zero SID.

Format
The suppress configuration has two forms:

suppress \
gen_id <gid>, sig_id <sid>, \

suppress \
gen_id <gid>, sig_id <sid>, \
track <by srclby_dst>, ip <ip-list>

Examples

Suppress this event completely:
suppress gen_id 1, sig_id 1852:

Suppress this event from this IP:

96

Option Description

gen_id <gid> Specify the generator ID of an associated rgn_id 0, sig _id 0 can be used
to specify a "global” threshold that applies to all rules.
sig _id <sid> Specify the signature ID of an associated rslg._id 0 specifies a "global” filter

because it appliesto aig -id s for the givergen_id .
track by _srclby _dst | Suppress by source IP address or destination IP address.isTtytional, but if
presentjp must be provided as well.

ip <list> Restrict the suppression to only source or destination tResmdes (indicated by
track parameter) determined by jlist¢,. If track is provided, ipstrioe provided
as well.

suppress gen_id 1, sig_id 1852, track by src, ip 10.1.1.54
Suppress this event to this CIDR block:

suppress gen_id 1, sig_id 1852, track by dst, ip 10.1.1.0/2 4

2.4.4 Event Logging

Snort supports logging multiple events per packet/strédeahare prioritized with different insertion methods, sash
max content length or event ordering using the event queue.

The general configuration of the event queue is as follows:
config event_queue: [max_queue [size]] [log [size]] [orde r_events [TYPE]]

Event Queue Configuration Options There are three configuration options to the configuratioampater 'eventjueue’.

1. maxqueue

This determines the maximum size of the event queue. Forgleaimthe event queue has a max size of 8, only
8 events will be stored for a single packet or stream.

The default value is 8.

2. log

This determines the number of events to log for a given pamk&iteam. You can’tlog more than the mewent
number that was specified.

The default value is 3.

3. order _events

This argument determines the way that the incoming evestsraered. We currently have two different meth-
ods:

e priority - The highest priority (1 being the highest) events are crddirst.

e content _length - Rules are ordered before decode or preprocessor aledsuéas that have a longer
content are ordered before rules with shorter contents.

The method in which events are ordered does not affect rplestguch as pass, alert, log, etc.
The default value is conteténgth.

97

Event Queue Configuration Examples The default configuration:

config event_queue: max_queue 8 log 3 order_events content _length
Example of a reconfigured event queue:

config event_queue: max_queue 10 log 3 order_events conten t_length
Use the default event queue values, but change event order:

config event_queue: order_events priority
Use the default event queue values but change the numbeggddicevents:

config event_queue: log 2

2.5 Performance Profiling

Snort can provide statistics on rule and preprocessor paeioce. Each require only a simpdenfig option to
snort.conf and Snort will print statistics on the worst (or all) perfazrs on exit. When a file name is provided in
profile _rules or profile _preprocs , the statistics will be saved in these files.append is not specified, a new
file will be created each time Snort is run. The filenames valldtimestamps appended to them. These files will be
found in the logging directory.

To use this feature, you must build snort with themable-perfprofiling option to the configure script.

2.5.1 Rule Profiling
Format

config profile_rules: \
print [all | <num>], \
sort <sort_option> \
[filename <filename> [append]]

e <num>is the number of rules to print

e <sort _option> is one of:
checks
matches
nomatches
avg _ticks
avg _ticks _per _match
avg _ticks _per _nomatch
total _ticks

o <filename> is the output filename

e [append] dictates that the output will go to the same file each timeidopt)

98

Rule Profile Statistics (worst 4 rules)

Num SID GID Rev Checks Matches Alerts Ticks Avg/Check Avg/Ma tch Avg/Nonmatch
1 2389 1 12 1 1 1 385698 385698.0 385698.0 0.0
2 2178 1 17 2 0 0 107822 53911.0 0.0 53911.0
3 2179 1 8 2 0 0 92458 46229.0 0.0 46229.0
4 1734 1 37 2 0 0 90054 45027.0 0.0 45027.0

Figure 2.1: Rule Profiling Example Output

Examples

e Print all rules, sort by avdicks (default configuration if option is turned on)
config profile _rules

Print all rules, sort by avgicks, and append to fileles _stats.txt
config profile _rules: filename rules _stats.txt append

e Print the top 10 rules, based on highest average time
config profile _rules: print 10, sort avg _ticks

Print all rules, sorted by number of checks
config profile _rules: print all, sort checks

Print top 100 rules, based on total time
config profile _rules: print 100, sort total _ticks

¢ Print with default options, save results to performande&ch time
config profile _rules: filename performance.txt append

Print top 20 rules, save results to perf.txt with timestamfilename
config profile _rules: print 20, filename perf.txt

Output

Snort will print a table much like the following at exit.
Configuration line used to print the above table:
config profile _rules: print 4, sort total _ticks

The columns represent:

e Number (rank)

e SigID

e Generator ID

e Checks (number of times rule was evaluated after fast patbatch within portgroup or any-any rules)
e Matches (number of times ALL rule options matched, will bgthfor rules that have no options)

e Alerts (humber of alerts generated from this rule)

e CPU Ticks

e Avg Ticks per Check

e Avg Ticks per Match

99

e Avg Ticks per Nonmatch

Interpreting this info is the key. The Microsecs (or Tickgjumn is important because that is the total time spent
evaluating a given rule. But, if that rule is causing aléttsjakes sense to leave it alone.

A high Avg/Check is a poor performing rule, that most likelgntains PCRE. High Checks and low Avg/Check is
usually an any=any rule with few rule options and no content. Quick to chelek few options may or may not match.
We are looking at moving some of these into code, especiatiyd with low SIDs.

By default, this information will be printed to the consolé@n Snort exits. You can use the "filename” option in
snort.conf to specify a file where this will be written. If Japnd” is not specified, a new file will be created each time
Snortis run. The filenames will have timestamps appenddtetmt These files will be found in the logging directory.

2.5.2 Preprocessor Profiling
Format
config profile_preprocs: \
print [all | <num>], \

sort <sort_option> \
[, filename <filename> [append]]

<num> is the number of preprocessors to print

<sort _option> is one of:

checks
avg _ticks
total _ticks

<filename> s the output filename

[append] dictates that the output will go to the same file each timei¢ojad)

Examples

e Print all preprocessors, sort by atigks (default configuration if option is turned on)

config profile _preprocs

e Print all preprocessors, sort by atigks, and append to filereprocs _stats.txt
config profile _preprocs: filename preprocs _stats.txt append

e Print the top 10 preprocessors, based on highest average tim
config profile _preprocs: print 10, sort avg _ticks

e Print all preprocessors, sorted by number of checks
config profile _preprocs: print all, sort checks

Output

Snort will print a table much like the following at exit.

Configuration line used to print the above table:

config profile_rules: \
print 3, sort total_ticks

100

Preprocessor Profile Statistics (all)

Num

1

2

1
1

coO~NO O WwWwN -

2

2

Preprocessor Layer Checks Exits
ftptelnet_ftp 0 2697 2697
detect 0 930237 930237
rule eval 1 1347969 1347969
rule tree eval 2 1669390 1669390
pcre 3 488652 488652
asnl 3 1 1
uricontent 3 647122 647122
content 3 1043099 1043099
ftpbounce 3 23 23
byte_jump 3 9007 9007
byte_test 3 239015 239015
icmp_seq 3 2 2
fragbits 3 65259 65259
isdataat 3 5085 5085
flags 3 4147 4147
flowbits 3 2002630 2002630
ack 3 4042 4042
flow 3 1347822 1347822
icode 3 75538 75538
itype 3 27009 27009
icmp_id 3 41150 41150
ip_proto 3 142625 142625
ipopts 3 13690 13690
rtn eval 2 55836 55836
mpse 1 492836 492836
frag3 0 76925 76925
frag3insert 1 70885 70885
frag3rebuild 1 5419 5419
dcerpc 0 127332 127332
s5 0 809682 809682
sbtcp 1 765281 765281
s5TcpState 2 742464 742464
s5TcpFlush 3 51987 51987
1 s5TcpProcessRebuilt 4 47355 47355
2 s5TcpBuildPacket 4 47360 47360
s5TcpData 3 250035 250035
1 s5TcpPktinsert 4 88173 88173
s5TcpNewSess 2 60880 60880
eventq 0 2089428 2089428
httpinspect 0 296030 296030
smtp 0 137653 137653
decode 0 1057635 1057635
ftptelnet_telnet 0 175 175
sfportscan 0 881153 881153
backorifice 0 35369 35369
dns 0 16639 16639
total 0 1018323 1018323

Microsecs Avg/Check Pc

t of Caller Pct of Total

135720
31645670
26758596
26605086
18994719
8
2638614
3154396
19
3321
64401
0
10168
757
517
212231
261
79002
4280
1524
1618
5004
457
22763
4135697
1683797
434980
6280
2426830
14195602
14128577
13223585
92918
14548497
41711
141490
110136
81779
26690209
1862359
227982
1162456
175
518655
4875
1346
67046412

50.32

34.02
19.85
15.94
38.87
8.56
4.08
3.02
0.87
0.37
0.27
0.16
0.16
0.15
0.12
0.11
0.06
0.06
0.06
0.06
0.04
0.04
0.03
0.41
8.39
21.89
6.14
1.16
19.06
17.53
18.46
17.81
1.79
307.22
0.88
0.57
1.25
1.34
12.77
6.29
1.66
1.10
1.00
0.59
0.14
0.08
65.84

0.20
47.20
84.56
99.43
71.40
0.00
9.92
11.86
0.00
0.01
0.24
0.00
0.04
0.00
0.00
0.80
0.00
0.30
0.02
0.01
0.01
0.02
0.00
0.09
13.07
251
25.83
0.37
3.62
21.17
99.53
93.59
0.70
15657.
44.89
1.07
77.84
0.58
39.81
2.78
0.34
1.73
0.00
0.77
0.01
0.00
0.00

Figure 2.2: Preprocessor Profiling Example Output

101

0.20
47.20
39.91
39.68
28.33
0.00
3.94
4.70
0.00
0.00
0.10
0.00
0.02
0.00
0.00
0.32
0.00
0.12
0.01
0.00
0.00
0.01
0.00
0.03
6.17
251
0.65
0.01
3.62
21.17
21.07
19.72
0.14
21.70
0.06
0.21
0.16
0.12
39.81
2.78
0.34
1.73
0.00
0.77
0.01
0.00
0.00

The columns represent:

e Number (rank) - The number is indented for each layer. Layereprocessors are listed under their respective
caller (and sorted similarly).

e Preprocessor Name

e Layer - When printing a specific number of preprocessors wtasks info for a particular preprocessor is
printed for each layer O preprocessor stat.

e Checks (number of times preprocessor decided to look atkepgmorts matched, app layer header was correct,
etc)

e Exits (number of corresponding exits — just to verify codénistrumented correctly, should ALWAYS match
Checks, unless an exception was trapped)

e CPU Ticks
e Avg Ticks per Check

e Percent of caller - For non layer O preprocessors, i.e. subres within preprocessors, this identifies the percent
of the caller’s ticks that is spent for this subtask.

Because of task swapping, non-instrumented code, and fattters, the Pct of Caller field will not add up to 100%
of the caller’s time. It does give a reasonable indicatioh@f much relative time is spent within each subtask.

By default, this information will be printed to the consolé@n Snort exits. You can use the "filename” option in
snort.conf to specify a file where this will be written. If Japnd” is not specified, a new file will be created each time
Snortis run. The filenames will have timestamps appenddtetmt These files will be found in the logging directory.

2.5.3 Packet Performance Monitoring (PPM)

PPM provides thresholding mechanisms that can be used vadpra basic level of latency control for snort. It does
not provide a hard and fast latency guarantee but shouldaatgirovide a good average latency control. Both rules
and packets can be checked for latency. The action taken detection of excessive latency is configurable. The
following sections describe configuration, sample outpnt] some implementation details worth noting.

To use PPM, you must build with the —enable-ppm or the —ersdoliecefire option to configure.

PPM is configured as follows:

Packet configuration:;

config ppm: max-pkt-time <micro-secs>, \
fastpath-expensive-packets, \
pkt-log, \
debug-pkts

Rule configuration:

config ppm: max-rule-time <micro-secs>, \
threshold count, \
suspend-expensive-rules, \
suspend-timeout <seconds>, \
rule-log [log] [alert]

Packets and rules can be configured separately, as abowggetinér in just one config ppm statement. Packet and rule
monitoring is independent, so one or both or neither may lablexal.

102

Configuration

Packet Configuration Options

max-pkt-time <micro-secs>

e enables packet latency thresholding using 'micros-sectialimit.
e defaultis 0 (packet latency thresholding disabled)
e reasonable starting defaults: 100/250/1000 for 1G/100MiBts

fastpath-expensive-packets

e enables stopping further inspection of a packet if the mar tis exceeded

o defaultis off
pkt-log

e enables logging packet event if packet exceeds max-pld-tim
e logging is to syslog or console depending upon snort corditpm

e defaultis no logging
debug-pkts

e enables per packet timing stats to be printed after eachgpack

o default is off

Rule Configuration Options

max-rule-time <micro-secs>

e enables rule latency thresholding using 'micros-secshadimit.
e defaultis 0 (rule latency thresholding disabled)

e reasonable starting defaults: 100/250/1000 for 1G/100MiBts
threshold <count>

e sets the number of consecutive rule time excesses befablitig a rule

e defaultis 5
suspend-expensive-rules

e enables suspending rule inspection if the max rule time éseded

e defaultis off
suspend-timeout <seconds>

e rule suspension time in seconds
e defaultis 60 seconds

e set to zero to permanently disable expensive rules

103

rule-log [log] [alert]

e enables event logging output for rules
e defaultis no logging
e one or both of the options 'log’ and "alert’ must be used withié-log’

¢ the log option enables output to syslog or console depenging snort configuration

Examples

Example 1: The following enables packet tracking:
config ppm: max-pkt-time 100

The following enables rule tracking:
config ppm: max-rule-time 50, threshold 5

If fastpath-expensive-packets or suspend-expensiesisiinot used, then no action is taken other than to increment
the count of the number of packets that should be fastpatttideorules that should be suspended. A summary of this
information is printed out when snort exits.

Example 2:

The following suspends rules and aborts packet inspeclibase rules were used to generate the sample output that
follows.

config ppm: \
max-pkt-time 50, fastpath-expensive-packets, \
pkt-log, debug-pkt

config ppm: \

max-rule-time 50, threshold 5, suspend-expensive-rules, \
suspend-timeout 300, rule-log log alert

Sample Snort Output

Sample Snort Startup Output

Packet Performance Monitor Config:
ticks per usec : 1600 ticks
max packet time : 50 usecs

packet action : fastpath-expensive-packets
packet logging : log
debug-pkts . disabled

Rule Performance Monitor Config:
ticks per usec : 1600 ticks
max rule time : 50 usecs
rule action . suspend-expensive-rules
rule threshold : 5
suspend timeout : 300 secs
rule logging . alert log

104

Sample Snort Run-time Output

PPM: Process-BeginPkt[61] caplen=60
PPM: Pkt[61] Used= 8.15385 usecs
PPM: Process-EndPki[61]

PPM: Process-BeginPkt[62] caplen=342
PPM: Pkt[62] Used= 65.3659 usecs
PPM: Process-EndPki[62]

PPM: Pkt-Event Pki[63] used=56.0438 usecs, 0 rules, 1 nc-ru les tested, packet fastpathed.
PPM: Process-BeginPkt[63] caplen=60

PPM: Pkt[63] Used= 8.394 usecs

PPM: Process-EndPki[63]

PPM: Process-BeginPkt[64] caplen=60
PPM: Pkt[64] Used= 8.21764 usecs
PPM: Process-EndPkt[64]

Sample Snort Exit Output

Packet Performance Summary:

max packet time : 50 usecs

packet events 01

avg pkt time . 0.633125 usecs
Rule Performance Summary:

max rule time : 50 usecs

rule events 00

avg nc-rule time : 0.2675 usecs

Implementation Details

e Enforcement of packet and rule processing times is done pftaeessing each rule. Latency control is not
enforced after each preprocessor.

e This implementation is software based and does not use amupt driven timing mechanism and is therefore
subject to the granularity of the software based timingsteBue to the granularity of the timing measurements
any individual packet may exceed the user specified packei@processing time limit. Therefore this imple-
mentation cannot implement a precise latency guarantéestvitt timing guarantees. Hence the reason this is
considered a best effort approach.

e Since this implementation depends on hardware based hifgrpeance frequency counters, latency threshold-
ing is presently only available on Intel and PPC platforms.

e Time checks are made based on the total system time, notgz@ugsage by Snort. This was a conscious design
decision because when a system is loaded, the latency fakatia based on the total system time, not just the
processor time the Snort application receives. Therefbierecommended that you tune your thresholding to
operate optimally when your system is under load.

2.6 Output Modules

Output modules are new as of version 1.6. They allow Snorttmbch more flexible in the formatting and presentation
of output to its users. The output modules are run when the atdogging subsystems of Snort are called, after

105

the preprocessors and detection engine. The format of tieetilies in the rules file is very similar to that of the
preprocessors.

Multiple output plugins may be specified in the Snort confidian file. When multiple plugins of the same type (log,
alert) are specified, they are stacked and called in sequeimer an event occurs. As with the standard logging and
alerting systems, output plugins send their data to /vaigiwort by default or to a user directed directory (using-the
command line switch).

Output modules are loaded at runtime by specifying the digyword in the rules file:
output <name>: <options>

output alert_syslog: log_auth log_alert

2.6.1 alertsyslog

This module sends alerts to the syslog facility (much like #h command line switch). This module also allows the
user to specify the logging facility and priority within tt&nort rules file, giving users greater flexibility in logging
alerts.

Available Keywords

Facilities
e log _auth
e log _authpriv
e log _daemon
e log _locald
e log _locall
e log _local2
e log _local3
e log _locald
e log _local5
e log _localé
e log _local7

e log _user

Priorities
e log _emerg
e log _alert
e log _crit
e log _err
e log _warning
e log _notice
e log _info

e log _debug

106

Options

e log _cons
e log _ndelay
e log _perror

e log _pid

Format

alert_syslog: \
<facility> <priority> <options>

ANOTE

As WIN32 does not run syslog servers locally by default, aimese and port can be passed as options. [The
default host is 127.0.0.1. The default port is 514.

output alert_syslog: \
[host=<hostname[:<port>],] \
<facility> <priority> <options>

Example

output alert_syslog: 10.1.1.1:514, <facility> <priority > <options>

2.6.2 alertfast

This will print Snort alerts in a quick one-line format to aegjified output file. It is a faster alerting method than full
alerts because it doesn’t need to print all of the packetérsad the output file and because it logs to only 1 file.

Format

output alert_fast: [<filename> ["packet”] [<limit>]]
<limit> ::= <number>[('G’'M'|K")]

o filename : the name of the log file. The default name is jlogdir¢/aMou may specify "stdout” for terminal
output. The name may include an absolute or relative path.

e packet : this option will cause multiline entries with full packeeéhders to be logged. By default, only brief
single-line entries are logged.

e limit : an optional limit on file size which defaults to 128 MB. Thenimum is 1 KB. Se€2.6.13 for more
information.

Example

output alert_fast: alert.fast

107

2.6.3 alertfull

This will print Snort alert messages with full packet headdihe alerts will be written in the default logging diregtor
(/var/log/snort) or in the logging directory specified a¢ ttommand line.

Inside the logging directory, a directory will be created & These files will be decoded packet dumps of the packets
that triggered the alerts. The creation of these files slawestRlown considerably. This output method is discouraged
for all but the lightest traffic situations.

Format

output alert_full: [<filename> [<limit>]]
<limit> ::= <number>[('G’'M'|K")]

o filename : the name of the log file. The default name is jlogdir¢/aMou may specify "stdout” for terminal
output. The name may include an absolute or relative path.

e limit : an optional limit on file size which defaults to 128 MB. Thenimium is 1 KB. Se€2.6.13 for more
information.

Example

output alert_full: alert.full

2.6.4 alertunixsock

Sets up a UNIX domain socket and sends alert reports to ierBat programs/processes can listen in on this socket
and receive Snort alert and packet data in real time. Thisriently an experimental interface.

Format

alert_unixsock

Example

output alert_unixsock

2.6.5 logtcpdump

The logtcpdump module logs packets to a tcpdump-formatted files iBhiseful for performing post-process analysis
on collected traffic with the vast number of tools that arelatée for examining tcpdump-formatted files.

Format

output log_tcpdump: [<filename> [<limit>]]
<limit> ::= <number>[('G’'M'|K")]

e filename : the name of the log file. The default name is jlogdir¢/stlot. The name may include an absolute
or relative path. A UNIX timestamp is appended to the filename

e limit : an optional limit on file size which defaults to 128 MB. Whesegjuence of packets is to be logged, the
aggregate size is used to test the rollover condition [3&&2for more information.

108

Example

output log_tcpdump: snort.log

2.6.6 database

This module from Jed Pickel sends Snort data to a variety df 88abases. More information on installing and
configuring this module can be found on the [91]incidentwedp page. The arguments to this plugin are the name of
the database to be logged to and a parameter list. Pararaetespecified with the format parameter = argument. see
FigurelZB for example usage.

Format

database: <log | alert>, <database type>, <parameter list>
The following parameters are available:

host - Host to connect to. If a non-zero-length string is specifiEdP/IP communication is used. Without a host
name, it will connect using a local UNIX domain socket.

port - Port numberto connect to at the server host, or socket fiternextension for UNIX-domain connections.
dbname - Database name

user - Database username for authentication

passwor d - Password used if the database demands password autkientica

sensor_nane - Specify your own name for this Snort sensor. If you do notcffgea name, one will be generated
automatically

encodi ng - Because the packet payload and option data is binary, Ehaoeone simple and portable way to store it
in a database. Blobs are not used because they are not patabks databases. So i leave the encoding option
to you. You can choose from the following options. Each haswtn advantages and disadvantages:

hex (default) - Represent binary data as a hex string.

Storage requirements - 2x the size of the binary
Searchability - very good
Human readability - not readable unless you are a true geek, requires postgzioge

base64 - Represent binary data as a base64 string.

Storage requirements - ~1.3x the size of the binary
Searchability - impossible without post processing
Human readability - not readable requires post processing

asci i - Represent binary data as an ASCII string. This is the ontjoapvhere you will actually lose data.
Non-ASCII Data is represented as a ‘.. If you choose thisamptthen data for IP and TCP options will
still be represented as hex because it does not make anyfeetisat data to be ASCII.

Storage requirements - slightly larger than the binary because some characteresraped (&;,>)
Searchability - very good for searching for a text string impossible if yoantto search for binary
human readability - very good

det ai | - How much detailed data do you want to store? The options are:

ful | (default) - Log all details of a packet that caused an aladi@iding IP/TCP options and the payload)

109

output database: \
log, mysql, doname=snort user=snort host=localhost passw ord=xyz

Figure 2.3: Database Output Plugin Configuration

fast - Log only a minimum amount of data. You severely limit thegmdtal of some analysis applications
if you choose this option, but this is still the best choicedome applications. The following fields are
logged:timestamp , signature , source ip , destination ip ,source port |, destination port ,tcp
flags , andprotocol)

Furthermore, there is a logging method and database typentiet be defined. There are two logging types available,
log andalert . Setting the type to log attaches the database loggingifuradity to the log facility within the program.

If you set the type to log, the plugin will be called on the lagmut chain. Setting the type to alert attaches the plugin
to the alert output chain within the program.

There are five database types available in the current veddithe plugin. These amassqgl , mysgl , postgresgl
oracle , andodbc . Set the type to match the database you are using.

ANOTE

The database output plugin does not have the ability to leaalékts that are generated by using tie
keyword. See sectidn 3.7.5 for more details.

2.6.7 csv

The csv output plugin allows alert data to be written in a fatmasily importable to a database. The output fields and
their order may be customized.

Format

output alert_csv: [<filename> [<format> [<limit>]]]

<format> ::= "default’|<list>
<list> == <field>(,<field>)*
<field> == "dst"|"src"|"ttl" ...
<limit> ::= <number>[('G'|'M'|K")]

e filename : the name of the log file. The default name is jlogdir¢ /aevt. You may specify "stdout” for terminal
output. The name may include an absolute or relative path.

o format : The list of formatting options is below. If the formattingtion is "default”, the output is in the order
of the formatting options listed.

— timestamp

sig _generator

sig _id

sig _rev
— msg

— proto

— src

— srcport
— dst

110

— dstport
— ethsrc

— ethdst

— ethlen

— tepflags
— tepseq

— tcpack

— tcplen

— tcpwindow
— ttl

— tos

—id

— dgmlen
— iplen

— icmptype
— icmpcode
— icmpid

— icmpseq

e limit : an optional limit on file size which defaults to 128 MB. Thenimium is 1 KB. Se€2.6.13 for more
information.

Example
output alert_csv: /var/log/alert.csv default

output alert_csv: /varflog/alert.csv timestamp, msg

2.6.8 unified

The unified output plugin is designed to be the fastest plessilethod of logging Snort events. The unified output
plugin logs events in binary format, allowing another pamgs to handle complex logging mechanisms that would
otherwise diminish the performance of Snort.

The nameunifiedis a misnomer, as the unified output plugin creates two diffefiles, aralert file, and alog file.
The alert file contains the high-level details of an event (&%, protocol, port, message id). The log file contains
the detailed packet information (a packet dump with the ciased event ID). Both file types are written in a bimary
format described ispaunified.h

ANOTE

‘ Files have the file creation time (in Unix Epoch format) apgeshto each file when it is created.

Format
output alert_unified: <base file name> [, <limit <file size limit in MB>]
output log_unified: <base file name> [, <limit <file size li mit in MB>]

111

Example

output alert_unified: snort.alert, limit 128
output log_unified: snort.log, limit 128

2.6.9 unified 2

The unified2 output plugin is a replacement for the unifiegpatiplugin. It has the same performance characteristics,
but a slightly different logging format. See sectlon 2 6m8umified logging for more information.

Unified2 can work in one of three modes, packet logging, d@gging, or true unified logging. Packet logging
includes a capture of the entire packet and is specified lagthunified2 . Likewise, alert logging will only log
events and is specified witliert _unified2 . To include both logging styles in a single, unified file, siyngpecify
unified2

When MPLS support is turned on, MPLS labels can be includeahified2 events. Use optianpls _event _types to
enable this. If optiompls _event _types is not used, then MPLS labels will be not be included in unffiedents.

ANOTE

By default, unified 2 files have the file creation time (in Unipdeh format) appended to each file when it
created.

S

Format

output alert_unified2: \
flename <base filename> [, <limit <size in MB>] [, nostamp] [, mpls_event_types]

output log_unified2: \
filename <base filename> [, <limit <size in MB>] [, nostamp]

output unified2; \

flename <base file name> [, <limit <size in MB>] [, nostamp] [, mpls_event_types]
Example
output alert_unified2: filename snort.alert, limit 128, n ostamp
output log_unified2; filename snort.log, limit 128, nosta mp
output unified2: filename merged.log, limit 128, nostamp
output unified2: filename merged.log, limit 128, nostamp, mpls_event_types

2.6.10 alertprelude

ANOTE

support to use alefprelude is not built in by default. To use algntelude, snort must be built with thie
—enable-prelude argument passed to ./configure.

The alertprelude output pluginis used to log to a Prelude databasenére information on Prelude, sep://www.prelude-1ds.org

Format

output alert_prelude: \

112

http://www.prelude-ids.org/

profile=<name of prelude profile> \

[info=<priority number for info priority alerts>] \

[low=<priority number for low priority alerts>] \

[medium=<priority number for medium priority alerts>]

Example

output alert_prelude: profile=snort info=4 low=3 medium= 2

2.6.11 log null
Sometimes it is useful to be able to create rules that wilt atecertain types of traffic but will not cause packet log

entries. In Snort 1.8.2, the lagull plugin was introduced. This is equivalent to using theemmand line option but
it is able to work within a ruletype.

Format

output log_null

Example
output log_null # like using snort -n
ruletype info {
type alert

output alert_fast: info.alert
output log_null

2.6.12 alertaruba_action

ANOTE

Support to use alemrubaaction is not built in by default. To use aleatubaaction, snort must be built wit
the —enable-aruba argument passed to ./configure.

Communicates with an Aruba Networks wireless mobility coliér to change the status of authenticated users. This
allows Snort to take action against users on the Aruba clhatto control their network privilege levels.

For more information on Aruba Networks access control régeeg/www.arubanetworks.com/

Format

output alert_aruba_action: \
<controller address> <secrettype> <secret> <action>

The following parameters are required:

control |l er addr ess- Aruba mobility controller address.

secrettype - Secret type, one of "shal”, "'md5” or "cleartext”.

113

http://www.arubanetworks.com/

secr et - Authentication secret configured on the Aruba mobility woter with the "aaa xml-api client” configura-
tion command, represented as a shal or md5 hash, or a clqzatsword.

acti on - Action to apply to the source IP address of the traffic getiegaan alert.

bl ackl i st - Blacklist the station by disabling all radio communicatio
setrol e: r ol ename - Change the users role to the specified rolename.

Example

output alert_aruba_action: \
10.3.9.6 cleartext foobar setrole:quarantine_role

2.6.13 Log Limits
This section pertains to logs produced dgrt _fast , alert _full , alert _csv, andlog _tcpdump . unified and
unified2 also may be given limits. Those limits are described in tlspeetive sections.

When a configured limitis reached, the currentlog is closetanew log is opened with a UNIX timestamp appended
to the configured log name.

Limits are configured as follows:

<limit> ::= <number>[(<gh>|<mb>|<kb>)]

<gb> = 'Gqg’
<mb> ;= 'MI'm’
<kb> ::= K[k

Rollover will occur at most once per second so if limit is tanadl for logging rate, limit will be exceeded. Rollover
works correctly if snort is stopped/restarted.

2.7 Host Attribute Table

Starting with version 2.8.1, Snort has the capability to indermation from an outside source to determine both the
protocol for use with Snort rules, and IP-Frag policy (seetisa[Z21) and TCP Stream reassembly policies (see
sectiorZZPR). This information is stored in an attribwklé, which is loaded at startup. The table is re-read during
run time upon receipt of signal number 30.

Snort associates a given packet with its attribute data thentable, if applicable.

For rule evaluation, service information is used insteatthefports when the protocol metadata in the rule matches the
service corresponding to the traffic. If the rule doesn’tdhprotocol metadata, or the traffic doesn’t have any matching
service information, the rule relies on the port informatio

ANOTE

‘ To use a host attribute table, Snort must be configured wih-#nable-targetbased flag.

2.7.1 Configuration Format

attribute_table filename <path to file>

114

2.7.2 Attribute Table File Format

The attribute table uses an XML format and consists of twéices, a mapping section, used to reduce the size of the
file for common data elements, and the host attribute sectiba mapping section is optional.

An example of the file format is shown below.

<SNORT_ATTRIBUTES>
<ATTRIBUTE_MAP>
<ENTRY>
<ID>1</ID>
<VALUE>Linux</VALUE>
</[ENTRY>
<ENTRY>
<ID>2</ID>
<VALUE>ssh</VALUE>
</[ENTRY>
</ATTRIBUTE_MAP>
<ATTRIBUTE_TABLE>
<HOST>
<IP>192.168.1.234</IP>
<OPERATING_SYSTEM>
<NAME>
<ATTRIBUTE_ID>1</ATTRIBUTE_ID>
<CONFIDENCE>100</CONFIDENCE>
<INAME>
<VENDOR>
<ATTRIBUTE_VALUE>Red Hat</ATTRIBUTE_VALUE>
<CONFIDENCE>99</CONFIDENCE>
</VENDOR>
<VERSION>
<ATTRIBUTE_VALUE>2.6</ATTRIBUTE_VALUE>
<CONFIDENCE>98</CONFIDENCE>
</VERSION>
<FRAG_POLICY>linux</FRAG_POLICY>
<STREAM_POLICY>linux</STREAM_POLICY>
</OPERATING_SYSTEM>
<SERVICES>
<SERVICE>
<PORT>
<ATTRIBUTE_VALUE>22</ATTRIBUTE_VALUE>
<CONFIDENCE>100</CONFIDENCE>
</PORT>
<IPPROTO>
<ATTRIBUTE_VALUE>tcp</ATTRIBUTE_VALUE>
<CONFIDENCE>100</CONFIDENCE>
</IPPROTO>
<PROTOCOL>
<ATTRIBUTE_ID>2</ATTRIBUTE_ID>
<CONFIDENCE>100</CONFIDENCE>
</PROTOCOL>
<APPLICATION>
<ATTRIBUTE_VALUE>OpenSSH</ATTRIBUTE_VALUE>
<CONFIDENCE>100</CONFIDENCE>
<VERSION>
<ATTRIBUTE_VALUE>3.9p1</ATTRIBUTE_VALUE>
<CONFIDENCE>93</CONFIDENCE>

115

</VERSION>
</APPLICATION>
</SERVICE>
<SERVICE>
<PORT>
<ATTRIBUTE_VALUE>23</ATTRIBUTE_VALUE>
<CONFIDENCE>100</CONFIDENCE>
</PORT>
<IPPROTO>
<ATTRIBUTE_VALUE>tcp</ATTRIBUTE_VALUE>
<CONFIDENCE>100</CONFIDENCE>
</IPPROTO>
<PROTOCOL>
<ATTRIBUTE_VALUE>telnet</ATTRIBUTE_VALUE>
<CONFIDENCE>100</CONFIDENCE>
</PROTOCOL>
<APPLICATION>
<ATTRIBUTE_VALUE>telnet</ATTRIBUTE_VALUE>
<CONFIDENCE>50</CONFIDENCE>
</APPLICATION>
</SERVICE>
</SERVICES>
<CLIENTS>
<CLIENT>
<IPPROTO>
<ATTRIBUTE_VALUE>tcp</ATTRIBUTE_VALUE>
<CONFIDENCE>100</CONFIDENCE>
</IPPROTO>
<PROTOCOL>
<ATTRIBUTE_ID>http</ATTRIBUTE_ID>
<CONFIDENCE>91</CONFIDENCE>
</PROTOCOL>
<APPLICATION>
<ATTRIBUTE_ID>IE Http Browser</ATTRIBUTE_ID>
<CONFIDENCE>90</CONFIDENCE>
<VERSION>
<ATTRIBUTE_VALUE>6.0</ATTRIBUTE_VALUE>
<CONFIDENCE>89</CONFIDENCE>
</VERSION>
</APPLICATION>
</CLIENT>
</CLIENTS>
</HOST>
</ATTRIBUTE_TABLE>
</SNORT_ATTRIBUTES>

ANOTE

With Snort 2.8.1, for a given host entry, the stream and I frdormation are both used. Of the servi
attributes, only the IP protocol (tcp, udp, etc), port, amot@col (http, ssh, etc) are used. The applicat
and version for a given service attribute, and any clientbattes are ignored. They will be used in a futy
release.

ce
on

A DTD for verification of the Host Attribute Table XML file is pvided with the snort packages.

116

2.8 Dynamic Modules

Dynamically loadable modules were introduced with Snd8t Z.hey can be loaded via directivessimort.conf or
via command-line options.

ANOTE

‘ To disable use of dynamic modules, Snort must be configurtdtie--disable-dynamicplugin flag.

2.8.1 Format

<directive> <parameters>

2.8.2 Directives

Syntax Description

dynamicpreprocessor [file Tells snort to load the dynamic preprocessor shared libréfy

<shared library path > | file is used) or all dynamic preprocessor shared libraridsd(i

directory <directory of rectory is used). Speciffle , followed by the full or rel-

shared libraries >] ative path to the shared library. Or, specifirectory , fol-
lowed by the full or relative path to a directory of preproses
shared libraries. (Same effect agynamic-preprocessor-lib or
--dynamic-preprocessor-lib-dir options). See chaptEl 5 for more

information on dynamic preprocessor libraries.
dynamicengine [file <shared Tells snort to load the dynamic engine shared library (if leised) or

library path > | directory all dynamic engine shared libraries (if directory is useSipecifyfile
<directory of shared followed by the full or relative path to the shared libraryr, Gpecify
libraries >] directory , followed by the full or relative path to a directory of pre-
processor shared libraries. (Same effect-éygamic-engine-lib or
--dynamic-preprocessor-lib-dir options). See chaptEl 5 for more
information on dynamic engine libraries.
dynamicdetection [file Tells snort to load the dynamic detection rules shared yb(d file
<shared library path > | is used) or all dynamic detection rules shared librariesd{iectory
directory <directory of is used). Specifyiile , followed by the full or relative path to the
shared libraries >] shared library. Or, specifgiirectory , followed by the full or relative
path to a directory of detection rules shared libraries. m{&a&ffect as
--dynamic-detection-lib or --dynamic-detection-lib-dir op-
tions). See chaptél 5 for more information on dynamic daiaatules
libraries.

2.9 Reloading a Snort Configuration

Snort now supports reloading a configuration in lieu of ngstg Snort in so as to provide seamless traffic inspection
during a configuration change. A separate thread will pangkcreate a swappable configuration object while the
main Snort packet processing thread continues inspectiffictunder the current configuration. When a swappable
configuration object is ready for use, the main Snort packetgssing thread will swap in the new configuration to
use and will continue processing under the new configurabimte that for some preprocessors, existing session data
will continue to use the configuration under which they wemrgated in order to continue with proper state for that
session. All newly created sessions will, however, use éveconfiguration.

117

2.9.1 Enabling support

To enable support for reloading a configuration, addable-reload to configure when compiling.

There is also an ancillary option that determines how Srimtikl behave if any non-reloadable options are changed
(see sectiofi 2.9.3 below). This option is enabled by defaudt the behavior is for Snort to restart if any non-
reloadable options are added/modified/removed. To dighidebehavior and have Snort exit instead of restart, add
--disable-reload-error-restart in addition to--enable-reload to configure when compiling.

ANOTE

‘ This functionality is not currently supported in Windows.

2.9.2 Reloading a configuration

First modify your snort.conf (the file passed to theoption on the command line).

Then, to initiate a reload, send Sno®i&HUPsignal, e.g.

$ kill -SIGHUP <snort pid>

ANOTE

‘ If reload support is not enabled, Snort will restart (asuta}s has) upon receipt of a SIGHUP.

ANOTE

An invalid configuration will still result in Snort fatal esring, so you should test your new configuratipn
before issuing a reload, e.§.snort -¢ snort.conf -T

2.9.3 Non-reloadable configuration options

There are a number of option changes that are currently aloadable because they require changes to output, startup
memory allocations, etc. Modifying any of these optiond wéluse Snort to restart (asSEGHUP previously did) or
exit (if --disable-reload-error-restart was used to configure Snort).

Reloadable configuration options of note:

¢ Adding/modifying/removing text rules and variables arpaglable.

¢ Adding/modifying/removing preprocessor configurations eloadable (except as noted below).
Non-reloadable configuration options of note:

¢ Adding/modifying/removing shared objects via dynamiea¢ibn, dynamicengine and dynamicpreprocessor are
not reloadable, i.e. any new/modified/removed shared thyjeitl require a restart.

e Any changes to output will require a restart.

Changes to the following options are not reloadable:

attribute_table
config alertfile
config asnl

config chroot

118

config daemon

config detection_filter
config flexresp2_attempts
config flexresp2_interface
config flexresp2_memcap
config flexresp2_rows
config flowbits_size
config interface

config logdir

config max_attribute_hosts
config nolog

config no_promisc
config pkt_count

config rate_filter

config read_bin_file
config set_gid

config set_uid

config snaplen

config threshold
dynamicdetection
dynamicengine
dynamicpreprocessor
output

In certain cases, only some of the parameters to a configroptigreprocessor configuration are not reloadable.
Those parameters are listed below the relevant config optipneprocessor.

config ppm: max-rule-time <int>
rule-log

config profile_rules
filename

print

sort

config profile_preprocs
filename

print

sort

preprocessor dcerpc2
memcap

preprocessor frag3_global
max_frags

memcap

prealloc_frags
prealloc_memcap
disabled

preprocessor perfmonitor
file

snortfile

preprocessor sfportscan
memcap

logfile

disabled

preprocessor stream5_global
memcap

max_tcp

max_udp

max_icmp

119

track_tcp
track_udp
track_icmp

2.10 Multiple Configurations

Snort now supports multiple configurations based on VLANd&Rosubnet within a single instance of Snort. This will
allow administrators to specify multiple snort configueattifiles and bind each configuration to one or more VLANS
or subnets rather than running one Snort for each configuratiquired. Each unique snort configuration file will
create a new configuration instance within snort. VLANs/#$th not bound to any specific configuration will use the
default configuration. Each configuration can have diffepgaprocessor settings and detection rules.

2.10.1 Creating Multiple Configurations

Default configuration for snort is specified using the erigtic option. A default configuration binds multiple vlans
or networks to non-default configurations, using the foilagwconfiguration line:

config binding: <path_to_snort.conf> vlan <vlanldList>
config binding: <path_to_snort.conf> net <ipList>
pat h.t o_snort . conf - Refers to the absolute or relative path to the snort.cargpecific configuration.

vl anl dLi st - Refers to the comma seperated list of vlandlds and vlamigesa. The format for ranges is two vlanid
separated by a "-". Spaces are allowed within ranges. Vaédld is any number in 0-4095 range. Negative
vland Ids and alphanumeric are not supported.

i pLi st - Refers to ip subnets. Subnets can be CIDR blocks for IPV®wa4.1 A maximum of 512 individual IPv4
or IPv6 addresses or CIDRs can be specified.

ANOTE

Vlan and Subnets can not be used in the same line. Confignsatan be applied based on either Vlang or
Subnets not both.

ANOTE

‘ Even though Vlan Ids 0 and 4095 are reserved, they are indlasl@alid in terms of configuring Snort.

2.10.2 Configuration Specific Elements
Config Options

Generally config options defined within the default configioraare global by default i.e. their value applies to all
other configurations. The following config options are sfie¢d each configuration.

policy_id
policy_mode

policy version

The following config options are specific to each configuratié not defined in a configuration, the default values of
the option (not the default configuration values) take ¢ffec

120

config checksum_drop

config disable_decode_alerts

config disable_decode_drops

config disable_ipopt_alerts

config disable_ipopt_drops

config disable_tcpopt_alerts

config disable_tcpopt_drops

config disable_tcpopt_experimental_alerts
config disable_tcpopt_experimental_drops
config disable_tcpopt_obsolete_alerts
config disable_tcpopt obsolete_drops
config disable_ttcp_alerts

config disable_tcpopt_ttcp_alerts

config disable_ttcp_drops

Rules

Rules are specific to configurations but only some parts oleagan be customized for performance reasons. If a
rule is not specified in a configuration then the rule will nesase an event for the configuration. A rule shares all
parts of the rule options, including the general optiong)qed detection options, non-payload detection optiond, a
post-detection options. Parts of the rule header can béftguedifferently across configurations, limited to:

Source IP address and port
Destination IP address and port
Action

A higher revision of a rule in one configuration will overridéher revisions of the same rule in other configurations.

Variables

n 9

Variables defined using "var”, "portvar” and "ipvar” are spfic to configurations. If the rules in a configuration use
variables, those variables must be defined in that configurat

Preprocessors

Preprocessors configurations can be defined within eachorlanbnet specific configuration. Options controlling
specific preprocessor memory usage, through specific liminemory usage or number of instances, are processed
only in default policy. The options control total memory gedor a preprocessor across all policies. These options are
ignored in non-default policies without raising an errorpeprocessor must be configured in default configuration be-

fore it can be configured in non-default configuration. Thisdquired as some mandatory preprocessor configuration
options are processed only in default configuration.

Events and Output
An unique policy id can be assigned by user, to each configurasing the following config line:
config policy_id: <id>

i d - Refers to a 16-bit unsigned value. This policy id will be dise identify alerts from a specific configuration in
the unified2 records.

121

ANOTE

‘ If no policy id is specified, snort assigns 0 (zero) value ®¢bnfiguration.

To enable vianld logging in unified2 records the followindiop can be used.

output alert_unified2: vlan_event_types (alert logging o nly)
output unified2; filename <filename>, vlan_event types (true unified logging)

fil enane - Refers to the absolute or relative filename.

vl an_event _t ypes - When this option is set, snort will use unified2 event typd add 105 for IPv4 and IPv6
respectively.

ANOTE

‘ Each event logged will have the vlanld from the packet if \@aders are present otherwise 0 will be us%d.

2.10.3 How Configuration is applied?

Snort assigns every incoming packet to a unique configurai@sed on the following criteria. If VLANID is present,
then the innermost VLANID is used to find bound configuratitithe bound configuration is the default configura-
tion, then destination IP address is searched to the mosifispgubnet that is bound to a non-default configuration.
The packet is assigned non-default configuration if fouratise the check is repeated using source IP address. In
the end, default configuration is used if no other matchingfigaration is found.

For addressed based configuration binding, this can leaaitificts between configurations if source address is bound
to one configuration and destination address is bound tdanadh this case, snort will use the first configuration in
the order of definition, that can be applied to the packet.

122

Chapter 3

Writing Snort Rules

3.1 The Basics

Snort uses a simple, lightweight rules description languhgt is flexible and quite powerful. There are a number of
simple guidelines to remember when developing Snort rilaswill help safeguard your sanity.

Most Snort rules are written in a single line. This was regdiin versions prior to 1.8. In current versions of Snort,
rules may span multiple lines by adding a backslaghthe end of the line.

Snort rules are divided into two logical sections, the ruéader and the rule options. The rule header contains
the rule’s action, protocol, source and destination IP eskl¥s and netmasks, and the source and destination ports
information. The rule option section contains alert messand information on which parts of the packet should be
inspected to determine if the rule action should be taken.

Figure[31 illustrates a sample Snort rule.

The text up to the first parenthesis is the rule header andettteos enclosed in parenthesis contains the rule options.
The words before the colons in the rule options section dteccaptionkeywords

ANOTE

Note that the rule options section is not specifically reggiiby any rule, they are just used for the sake of
making tighter definitions of packets to collect or alert ondrop, for that matter).

All of the elements in that make up a rule must be true for tlukcimted rule action to be taken. When taken together,
the elements can be considered to form a logieed statement. At the same time, the various rules in a Snorsrule
library file can be considered to form a large logice statement.

3.2 Rules Headers

3.2.1 Rule Actions

The rule header contains the information that defines the where, and what of a packet, as well as what to do in
the event that a packet with all the attributes indicatedenrtle should show up. The first item in a rule is the rule

alert tcp any any -> 192.168.1.0/24 111 \
(content:"|00 01 86 a5|"; msg:"mountd access";)

Figure 3.1: Sample Snort Rule

123

action. The rule action tells Snort what to do when it finds elkgeaithat matches the rule criteria. There are 5 available
default actions in Snort, alert, log, pass, activate, anthdyic. In addition, if you are running Snort in inline mode,
you have additional options which include drop, reject, adp.

alert - generate an alert using the selected alert mettimatthen log the packet

log - log the packet

pass - ignore the packet

activate - alert and then turn on another dynamic rule

dynamic - remain idle until activated by an activate ruteen act as a log rule

drop - make iptables drop the packet and log the packet

N oo g~ w N PRE

reject - make iptables drop the packet, log it, and thed sehCP reset if the protocol is TCP or an ICMP port
unreachable message if the protocol is UDP.

8. sdrop - make iptables drop the packet but do not log it.

You can also define your own rule types and associate one g muput plugins with them. You can then use the
rule types as actions in Snort rules.

This example will create a type that will log to just tcpdump:

ruletype suspicious

{

type log
output log_tcpdump: suspicious.log

This example will create a rule type that will log to sysloglanMySQL database:

ruletype redalert

{

type alert

output alert_syslog: LOG_AUTH LOG_ALERT

output database: log, mysql, user=snort dbname=snort host =localhost
}

3.2.2 Protocols

The next field in a rule is the protocol. There are four protetbat Snort currently analyzes for suspicious behavior
—TCP, UDP, ICMP, and IP. In the future there may be more, sadiRP, IGRP, GRE, OSPF, RIP, IPX, etc.

3.2.3 IP Addresses

The next portion of the rule header deals with the IP addredsart information for a given rule. The keyword any
may be used to define any address. Snort does not have a nmharprovide host name lookup for the IP address
fields in the rules file. The addresses are formed by a straigimeric IP address and a CIDIR[3] block. The CIDR
block indicates the netmask that should be applied to tleesratidress and any incoming packets that are tested against
the rule. A CIDR block mask of /24 indicates a Class C netwtir&,a Class B network, and /32 indicates a specific
machine address. For example, the address/CIDR comhinb®i®.168.1.0/24 would signify the block of addresses
from 192.168.1.1to 192.168.1.255. Any rule that used tesghation for, say, the destination address would match
on any address in that range. The CIDR designations give iceashort-hand way to designate large address spaces
with just a few characters.

124

alert tcp !192.168.1.0/24 any -> 192.168.1.0/24 111 \
(content: "|00 01 86 a5|"; msg: "external mountd access";)

Figure 3.2: Example IP Address Negation Rule

alert tcp 1[192.168.1.0/24,10.1.1.0/24] any -> \
[192.168.1.0/24,10.1.1.0/24] 111 (content: "|00 01 86 a5 "\
msg: "external mountd access";)

Figure 3.3: IP Address Lists

In Figure[3.1, the source IP address was set to match for anpuater talking, and the destination address was set to
match on the 192.168.1.0 Class C network.

There is an operator that can be applied to IP addressesetfation operator. This operator tells Snort to match any
IP address except the one indicated by the listed IP addrassegation operator is indicated with a . For example,
an easy modification to the initial example is to make it ad@rany traffic that originates outside of the local net with
the negation operator as shown in Figlird 3.2.

This rule’s IP addresses indicate any tcp packet with a sdir@ddress not originating from the internal network and
a destination address on the internal network.

You may also specify lists of IP addresses. An IP list is dpgtby enclosing a comma separated list of IP addresses
and CIDR blocks within square brackets. For the time beimg]P list may not include spaces between the addresses.
See Figur€3]3 for an example of an IP list in action.

3.2.4 Port Numbers

Port numbers may be specified in a number of ways, includingpamts, static port definitions, ranges, and by
negation. Any ports are a wildcard value, meaning literalfyy port. Static ports are indicated by a single port
number, such as 111 for portmapper, 23 for telnet, or 80 fipx; letc. Port ranges are indicated with the range operator
.. The range operator may be applied in a number of ways todakdfferent meanings, such as in Figlrd 3.4.

Port negation is indicated by using the negation operat®he negation operator may be applied against any of the
other rule types (except any, which would translate to nboe; Zen...). For example, if for some twisted reason you
wanted to log everything except the X Windows ports, you dald something like the rule in FigufeB.5.

3.2.5 The Direction Operator

The direction operator> indicates the orientation, or direction, of the traffic ttfa rule applies to. The IP address
and port numbers on the left side of the direction operataoissidered to be the traffic coming from the source

log udp any any -> 192.168.1.0/24 1:1024 log udp
traffic coming from any port and destination ports rangirgirl to 1024

log tcp any any -> 192.168.1.0/24 :6000
log tcp traffic from any port going to ports less than or eqoa®00
log tcp any :1024 -> 192.168.1.0/24 500:
log tcp traffic from privileged ports less than or equal to 4@@ing to ports greater than or equal to 500

Figure 3.4: Port Range Examples

125

log tcp any any -> 192.168.1.0/24 !6000:6010

Figure 3.5: Example of Port Negation
log tcp !192.168.1.0/24 any <> 192.168.1.0/24 23

Figure 3.6: Snort rules using the Bidirectional Operator

host, and the address and port information on the right sidbeooperator is the destination host. There is also a
bidirectional operator, which is indicated with<a> symbol. This tells Snort to consider the address/port gairs
either the source or destination orientation. This is hdodyecording/analyzing both sides of a conversation, sach
telnet or POP3 sessions. An example of the bidirectionalaipebeing used to record both sides of a telnet session is
shown in Figur&316.

Also, note that there is ne:- operator. In Snort versions before 1.8.7, the directioarafor did not have proper
error checking and many people used an invalid token. Theorethe<- does not exist is so that rules always read
consistently.

3.2.6 Activate/Dynamic Rules

ANOTE

Activate and Dynamic rules are being phased out in favor adralination of taggind{3.75) and flowbits

EE51D).

Activate/dynamic rule pairs give Snort a powerful capailiyou can now have one rule activate another when it's
action is performed for a set number of packets. This is vesful if you want to set Snort up to perform follow on
recording when a specific rule goes off. Activate rules ast jike alert rules, except they have a *required* option
field: activates. Dynamic rules act just like log rules, theyt have a different option field: activatég. Dynamic
rules have a second required field as well, count.

Activate rules are just like alerts but also tell Snort to addile when a specific network event occurs. Dynamic rules
are just like log rules except are dynamically enabled wheretctivate rule id goes off.

Put 'em together and they look like Figurel3.7.

These rules tell Snort to alert when it detects an IMAP buffearflow and collect the next 50 packets headed for port
143 coming from outside $HOMBET headed to SHOMBET. If the buffer overflow happened and was successful,
there’s a very good possibility that useful data will be @néd within the next 50 (or whatever) packets going to that
same service port on the network, so there’s value in catig¢hose packets for later analysis.

3.3 Rule Options

Rule options form the heart of Snort’s intrusion detectingiae, combining ease of use with power and flexibility. All
Snort rule options are separated from each other using thizston (;) character. Rule option keywords are separated
from their arguments with a colon () character.

activate tcp '$HOME_NET any -> $HOME_NET 143 (flags: PA; \
content: "|E8COFFFFFF|/bin"; activates: 1; \
msg: "IMAP buffer overflow!";)
dynamic tcp !$HOME_NET any -> $HOME_NET 143 (activated_by: 1; count: 50;)

Figure 3.7: Activate/Dynamic Rule Example

126

There are four major categories of rule options.

general These options provide information about the rule but do methany affect during detection
payload These options all look for data inside the packet payloadcamcbe inter-related
non-payload These options look for non-payload data

post-detection These options are rule specific triggers that happen aftelechas “fired.”

3.4 General Rule Options

3.4.1 msg
The msg rule option tells the logging and alerting enginatlessage to print along with a packet dump or to an alert.

It is a simple text string that utilizes theas an escape character to indicate a discrete charactenigifattotherwise
confuse Snort’s rules parser (such as the semi-colon ; cteaja

Format

msg: "<message text>";

3.4.2 reference

The reference keyword allows rules to include referencesternal attack identification systems. The plugin cutyent
supports several specific systems as well as unique URLs.plingin is to be used by output plugins to provide a link
to additional information about the alert produced.

Make sure to also take a lookratp://www.snort.org/pub-bin/sigs-search.cgi/ for a system that is indexing
descriptions of alerts based on of the sid (See SeLfion)3.4.4

Table 3.1: Supported Systems

System URL Prefix
bugtraq http://www.securityfocus.com/bid/
cve http://cve.mitre.org/cgi-bin/cvename.cgi?name=
nessus http://cgi.nessus.org/plugins/dump.php3?id=
arachnids| (currently down) http://www.whitehats.com/info/ID|S
mcafee http://vil.nai.com/vil/dispVirus.asp?virds=
url http://
Format
reference: <id system><id>; [reference: <id system><id >
Examples
alert tcp any any -> any 7070 (msg:"IDS411/dos-realaudio”; \
flags:AP; content:"|fff4 fffd 06|"; reference:arachnids ,IDS411;)
alert tcp any any -> any 21 (msg:"IDS287/ftp-wuftp260-veng lin-linux"; \

flags:AP; content:"|31c031db 31c9b046 cd80 31c031db|"; \

127

http://www.snort.org/pub-bin/sigs-search.cgi/

reference:arachnids,|DS287; reference:bugtraq,1387; \
reference:cve,CAN-2000-1574;)

3.4.3 gid

The gid keyword (generator id) is used to identify what part of Srgeherates the event when a particular rule
fires. For example gid 1 is associated with the rules subsyated various gids over 100 are designated for specific
preprocessors and the decoder. See etc/generators inuttoe $iee for the current generator ids in use. Note that the
gid keyword is optional and if it is not specified in a rule, itdefault to 1 and the rule will be part of the general rule
subsystem. To avoid potential conflict with gids defined iniBthat for some reason aren’t noted it etc/generators),

it is recommended that a value greater than 1,000,000 be &sedyeneral rule writing, it is not recommended that
thegid keyword be used. This option should be used withsttiekeyword. (See sectidn 3.%.4)

The file etc/gen-msg.map contains contains more informatiopreprocessor and decoder gids.

Format

gid: <generator id>;
Example
This example is a rule with a generator id of 1000001.

alert tcp any any -> any 80 (content."BOB"; gid:1000001; sid 1 revily)

3.4.4 sid

Thesid keyword is used to uniquely identify Snort rules. This imf@tion allows output plugins to identify rules
easily. This option should be used with tleg keyword. (See sectidn 3.3.5)

e <100 Reserved for future use
e 100-1,000,000 Rules included with the Snort distribution
e >1,000,000 Used for local rules

The file sid-msg.map contains a mapping of alert messagesad file IDs. This information is useful when post-
processing alert to map an ID to an alert message.

Format

sid: <snort rules id>;

Example

This example is a rule with the Snort Rule 1D of 1000983.

alert tcp any any -> any 80 (content."BOB"; sid:1000983; rev 1)

128

3.4.5

rev

Therev keyword is used to uniquely identify revisions of Snort gildRevisions, along with Snort rule id’s, allow
signatures and descriptions to be refined and replaced widhtad information. This option should be used with the
sid keyword. (See sectidn3.24.4)

Format

rev: <revision integer>;

Example

This example is a rule with the Snort Rule Revision of 1.

alert tcp any any -> any 80 (content."BOB"; sid:1000983; rev 1)

3.4.6 classtype

Theclasstype

keyword is used to categorize a rule as detecting an attathstipart of a more general type of attack

class. Snort provides a default set of attack classes teatisad by the default set of rules it provides. Defining
classifications for rules provides a way to better orgartieedvent data Snort produces.

Format

classtype: <class name>;

Example

alert tcp any any -> any 25 (msg:"SMTP expn root"; flags:A+; \

Attack classifications defined by Snort reside indlassification.config

config classification:

<class name>,<class description>

content:"expn root"; nocase; classtype:attempted-recon)

,<default priority>

file. The file uses the following syntax:

These attack classifications are listed in TabI¢ 3.2. Theyarmently ordered with 4 default priorities. A priority &f
(high) is the most severe and 4 (very low) is the least severe.

Table 3.2: Snort Default Classifications

Classtype

Description

| Priority |

attempted-admin

Attempted Administrator Privilege Gain

high

attempted-user

Attempted User Privilege Gain

high

inappropriate-content

Inappropriate Content was Detected

high

policy-violation

Potential Corporate Privacy Violation

high

shellcode-detect

Executable code was detected

high

successful-admin

Successful Administrator Privilege Gain

high

successful-user

Successful User Privilege Gain

high

trojan-activity

A Network Trojan was detected

high

unsuccessful-user

Unsuccessful User Privilege Gain

high

web-application-attack

Web Application Attack

high

129

attempted-dos Attempted Denial of Service medium
attempted-recon Attempted Information Leak medium
bad-unknown Potentially Bad Traffic medium
default-login-attempt Attempt to login by a default username apdmedium
password
denial-of-service Detection of a Denial of Service Attack medium
misc-attack Misc Attack medium
non-standard-protocol Detection of a hon-standard protocol or eveninedium
rpc-portmap-decode Decode of an RPC Query medium
successful-dos Denial of Service medium
successful-recon-largescale Large Scale Information Leak medium
successful-recon-limited Information Leak medium
suspicious-filename-detect A suspicious filename was detected medium
suspicious-login An attempted login using a suspicious usgrmedium
name was detected
system-call-detect A system call was detected medium
unusual-client-port-connection A client was using an unusual port medium
web-application-activity Access to a potentially vulnerable web appli-medium
cation
icmp-event Generic ICMP event low
misc-activity Misc activity low
network-scan Detection of a Network Scan low
not-suspicious Not Suspicious Traffic low
protocol-command-decode Generic Protocol Command Decode low
string-detect A suspicious string was detected low
unknown Unknown Traffic low
tcp-connection A TCP connection was detected very low

Warnings

The classtype option can only use classifications that have been definesar.conf by using theconfig
classification option. Snort provides a default set of classificationslassification.config that are used
by the rules it provides.

3.4.7 priority

Thepriority ~ tag assigns a severity level to rulesclasstype rule assigns a default priority (defined by tteafig
classification option) that may be overridden with a priority rule. Exangptd each case are given below.
Format

priority: <priority integer>;

Examples

alert TCP any any -> any 80 (msg: "WEB-MISC phf attempt"; flag S:A+ \
content: "/cgi-bin/phf"; priority:10;)

alert tcp any any -> any 80 (msg:"EXPLOIT ntpdx overflow"; \
dsize: >128; classtype:attempted-admin; priority:10);

130

3.4.8 metadata

Themetadata tag allows a rule writer to embed additional information abihe rule, typically in a key-value format.
Certain metadata keys and values have meaning to Snortatidted in Tabl&3]3. Keys other than those listed in the
table are effectively ignored by Snort and can be free-famith a key and a value. Multiple keys are separated by a
comma, while keys and values are separated by a space.

Table 3.3: Snort Metadata Keys

Key Description Value Format
engine Indicate a Shared Library Rule "shared”
soid Shared Library Rule Generator and SID gid|sid
service Target-Based Service Identifier "http”

ANOTE

Theservice Metadata Key is only meaningful when a Host Atttribute Tablerovided. When the value
exactly matches the service ID as specified in the table uless applied to that packet, otherwise, the rlle
is not applied (even if the ports specified in the rule mat&8ee Sectiof 217 for details on the Host Attribite
Table.

Format

The examples below show an stub rule from a shared librag. rithe first uses multiple metadata keywords, the
second a single metadata keyword, with keys separated bgasm

metadata: keyl valuel;
metadata: keyl valuel, key2 value2;

Examples

alert tcp any any -> any 80 (msg: "Shared Library Rule Example "\
metadata:engine shared; metadata:soid 3|12345;)

alert tcp any any -> any 80 (msg: "Shared Library Rule Example "\
metadata:engine shared, soid 3|12345;)

alert tcp any any -> any 80 (msg: "HTTP Service Rule Example"; \
metadata:service http;)

3.4.9 General Rule Quick Reference

Table 3.4: General rule option keywords

Keyword Description

msg The msg keyword tells the logging and alerting engine thesaugs to print with
the packet dump or alert.

reference The reference keyword allows rules to include referencescternal attack iden
tification systems.

gid The gid keyword (generator id) is used to identify what pa&oort generates the
event when a particular rule fires.

131

sid The sid keyword is used to uniquely identify Snort rules.

rev The rev keyword is used to uniquely identify revisions of 8moles.

classtype The classtype keyword is used to categorize a rule as degeati attack that ig
part of a more general type of attack class.

priority The priority keyword assigns a severity level to rules.

metadata The metadata keyword allows a rule writer to embed additimriarmation about
the rule, typically in a key-value format.

3.5 Payload Detection Rule Options

3.5.1 content

The content keyword is one of the more important featuresnafttS It allows the user to set rules that search for
specific content in the packet payload and trigger respoasedon that data. Whenever a content option pattern
match is performed, the Boyer-Moore pattern match funasaralled and the (rather computationally expensive) test
is performed against the packet contents. If data exactlgimay the argument data string is contained anywhere
within the packet’s payload, the test is successful andehwimder of the rule option tests are performed. Be aware
that this test is case sensitive.

The option data for the content keyword is somewhat comjl@gn contain mixed text and binary data. The binary
data is generally enclosed within the pigedharacter and represented as bytecode. Bytecode retgéseary data
as hexadecimal numbers and is a good shorthand method foiildeg complex binary data. The example below
shows use of mixed text and binary data in a Snort rule.

Note that multiple content rules can be specified in one fLités allows rules to be tailored for less false positives.

If the rule is preceded by!a the alert will be triggered on packets that do not contaim¢bntent. This is useful when
writing rules that want to alert on packets that do not matckréain pattern

ANOTE

Also note that the following characters must be escapedérsicontent rule:
; \ n

Format
content: [!] "<content string>";
Examples
alert tcp any any -> any 139 (content:"|5¢c 00|P]00|l|00|P|O O|E|0O0 5c|")

alert tcp any any -> any 80 (content:!"GET")

ANOTE

A ! modifier negates the results of the entire content searchijfies included. For example, if using
content:!"A"; within:50; and there are only 5 bytes of payload and there is no "A” in &iobytes, the
result will return a match. If there must be 50 bytes for adiatiatch, usésdataat as a pre-cursor to the
content.

132

Changing content behavior

Thecontent keyword has a number of modifier keywords. The modifier keylsahange how the previously speci-
fied content works. These modifier keywords are:

Table 3.5: Content Modifiers

Modifier Section
nocase B52
rawbytes B53
depth .04
offset B53
distance B50
within B51
http_clientbody | B53
http_cookie BL59
http_raw_cookie | BE5.T0D
http_header B511
http_raw_header | B512
http_method B.2.18
http_uri B.o.14
http_raw_uri BL5TH
http_statcode BEI6
http_statmsg BLIT
fast pattern BLI9

3.5.2 nocase

The nocase keyword allows the rule writer to specify that3hert should look for the specific pattern, ignoring case.
nocase modifies the previous 'content’ keyword in the rule.

Format

nocase,;

Example

alert tcp any any -> any 21 (msg:"FTP ROOT"; content"USER ro ot"; nocase;)

3.5.3 rawbytes

The rawbytes keyword allows rules to look at the raw packéd,dgnoring any decoding that was done by preproces-
sors. This acts as a modifier to the previous corfenil3.5itrmpt

format

rawbytes;

133

Example

This example tells the content pattern matcher to look atdtetraffic, instead of the decoded traffic provided by the
Telnet decoder.

alert tcp any any -> any 21 (msg: "Telnet NOP"; content; "|FF F 1] rawbytes;)

3.5.4 depth

The depth keyword allows the rule writer to specify how fapia packet Snort should search for the specified pattern.
depth modifies the previous ‘content’ keyword in the rule.

A depth of 5 would tell Snort to only look for the specified ait within the first 5 bytes of the payload.

As the depth keyword is a modifier to the previous ‘conteny\kerd, there must be a contentin the rule before ‘depth’
is specified.

Format

depth: <number>;

3.5.5 offset

The offset keyword allows the rule writer to specify wherestart searching for a pattern within a packet. offset
modifies the previous 'content’ keyword in the rule.

An offset of 5 would tell Snort to start looking for the speedipattern after the first 5 bytes of the payload.

As this keyword is a modifier to the previous 'content’ key@pothere must be a content in the rule before 'offset’ is
specified.

Format

offset. <number>;

Example

The following example shows use of a combined content, ofésel depth search rule.

alert tcp any any -> any 80 (content: "cgi-bin/phf"; offset: 4; depth:20;)

3.5.6 distance

The distance keyword allows the rule writer to specify howifdo a packet Snort should ignore before starting to
search for the specified pattern relative to the end of theipus pattern match.

This can be thought of as exactly the same thing as offset$8eo3.5]), except it is relative to the end of the last
pattern match instead of the beginning of the packet.

Format

distance: <byte count>;

134

Example
The rule below maps to a regular expression of /ABIGDEF/.

alert tcp any any -> any any (content:"ABC"; content: "DEF"; distance:1;)

3.5.7 within
The within keyword is a content modifier that makes sure that@st N bytes are between pattern matches using the

content keyword (See Sectibn 3J5.1). It's designed to bd irseonjunction with the distance (Section315.6) rule
option.

Format

within: <byte count>;

Examples
This rule constrains the search of EFG to not go past 10 byststbe ABC match.

alert tcp any any -> any any (content:"ABC"; content: "EFG" within:10;)

3.5.8 http_client_body

The httpclientbody keyword is a content modifier that restricts the seavthé body of an HTTP client request.

As this keyword is a modifier to the previous 'content’ keydahere must be a contentin the rule before 'httient body’
is specified.

Format

http_client_body;

Examples
This rule constrains the search for the pattern "EFG” to tve body of an HTTP client request.

alert tcp any any -> any 80 (content:"ABC"; content: "EFG"; h ttp_client_body;)

/N\NOTE

‘ Thehttp _client _body modifier is not allowed to be used with trevbytes modifier for the same content

3.5.9 http.cookie
The httpcookie keyword is a content modifier that restricts the setwthe extracted Cookie Header field of a HTTP
client request or a HTTP server response (per the configurafiHttpinspediZ.216).

As this keyword is a modifier to the previous 'content’ keydidhere must be a content in the rule before 'httkie’
is specified. This keyword is dependent on the 'enafolekie’ config option. The Cookie Header field will be
extracted only when this option is configured.

The extracted Cookie Header field may be NORMALIZED, per thefiguration of Httpinspect (s€eZ.P.6).

135

Format

http_cookie;

Examples
This rule constrains the search for the pattern "EFG” to tkteaeted Cookie Header field of a HTTP client request.

alert tcp any any -> any 80 (content:"ABC"; content: "EFG"; h ttp_cookie;)

NOTE
Thehttp _cookie madifier is not allowed to be used with thevbytes orfast _pattern modifiers for the
same content.

3.5.10 httpraw_cookie

The httpraw_cookie keyword is a content modifier that restricts the seto¢he extracted UNNORMALIZED Cookie
Header field of a HTTP client request or a HTTP server respuesethe configuration of HttpinspdctZ.P.6).

As this keyword is a modifier to the previous 'content’ keyaidhere must be a content in the rule before "htipv_cookie’
is specified. This keyword is dependent on the ’enatolekie’ config option. The Cookie Header field will be ex-
tracted only when this option is configured.

Format

http_raw_cookie;

Examples

This rule constrains the search for the pattern "EFG” to tkteagted Unnormalized Cookie Header field of a HTTP
client request.

alert tcp any any -> any 80 (content."ABC"; content: "EFG"; h ttp_raw_cookie;)

NOTE
Thehttp _raw _cookie maodifier is not allowed to be used with trevbytes , http _cookie orfast _pattern
modifiers for the same content.

3.5.11 http.header

The httpheader keyword is a content modifier that restricts the $etarthe extracted Header fields of a HTTP client
request or a HTTP server response (per the configurationtpfrispecE2Z.216).

As this keyword is a modifier to the previous 'content’ keydahere must be a content in the rule before 'higader’
is specified.

The extracted Header fields may be NORMALIZED, per the conéition of Httpinspect (sde2.2.6).

Format

http_header;

136

Examples

This rule constrains the search for the pattern "EFG” to ttteseted Header fields of a HTTP client requestora HTTP
server response.

alert tcp any any -> any 80 (content."ABC"; content: "EFG"; h ttp_header;)

ANOTE

‘ Thehttp _header modifier is not allowed to be used with trevbytes maodifier for the same content.

3.5.12 httpraw_header

The httpraw_header keyword is a content modifier that restricts the $darthe extracted UNNORMALIZED Header
fields of a HTTP client request or a HTTP server response (econfiguration of HttplnspeEiZ.2.6).

As this keyword is a modifier to the previous 'content’ keydidhere must be a contentin the rule before "hipv_header’
is specified.

Format

http_raw_header;

Examples

This rule constrains the search for the pattern "EFG” to ttteseted Header fields of a HTTP client request ora HTTP
server response.

alert tcp any any -> any 80 (content."ABC"; content: "EFG"; h ttp_raw_header;)

ANOTE

Thehttp _raw _header modifier is not allowed to be used with trevbytes , http _header orfast _pattern
modifiers for the same content.

3.5.13 httpmethod

The httpmethod keyword is a content modifier that restricts the $eto¢he extracted Method from a HTTP client
request.

As this keyword is a modifier to the previous 'content’ keydidhere must be a content in the rule before "htipthod’
is specified.

Format

http_method;

137

Examples
This rule constrains the search for the pattern "GET” to tkteaeted Method from a HTTP client request.

alert tcp any any -> any 80 (content."ABC"; content: "GET"; h ttp_method;)

/\NOTE

Thehttp _method modifier is not allowed to be used with trevbytes maodifier for the same content.

3.5.14 http.uri

The httpuri keyword is a content modifier that restricts the searctietoNORMALIZED request URI field . Using a
content rule option followed by a httpri modifier is the same as using a uricontent by itself (E€e28).

As this keyword is a modifier to the previous 'content’ keyapthere must be a content in the rule before ’hitp
is specified.

Format

http_uri;

Examples
This rule constrains the search for the pattern "EFG” to tI@RWMALIZED URI.

alert tcp any any -> any 80 (content:"ABC"; content: "EFG"; h ttp_uri;)

/\NOTE

Thehttp _uri modifier is not allowed to be used with trevbytes modifier for the same content.

3.5.15 httpraw _uri

The httpraw_uri keyword is a content modifier that restricts the searcthitoUNNORMALIZED request URI field .

As this keyword is a modifier to the previous 'content’ keyddhere must be a content in the rule before "hipv_uri’
is specified.

Format

http_raw_uri;

Examples
This rule constrains the search for the pattern "EFG” to tiNNORMALIZED URI.

alert tcp any any -> any 80 (content."ABC"; content: "EFG"; h ttp_raw_uri;)

ANOTE

Thehttp _raw _uri modifier is not allowed to be used with trevbytes |, http _uri orfast _pattern mod-
ifiers for the same content.

138

3.5.16 http stat.code

The httpstatcode keyword is a content modifier that restricts the seavdé extracted Status code field from a
HTTP server response.

As this keyword is a modifier to the previous 'content’ keydidihere must be a contentin the rule before 'Htat code’
is specified.

The Status Code field will be extracted only if the extendegbnseinspection is configured for the Httplnspect (see

223).

Format

http_stat_code;

Examples

This rule constrains the search for the pattern "200” to tkteaeted Status Code field of a HTTP server response.

alert tcp any any -> any 80 (content."ABC"; content: "200"; h ttp_stat_code;)

ANOTE

Thehttp _stat _code modifier is not allowed to be used with thewbytes orfast _pattern modifiers for
the same content.

3.5.17 httpstat msg

The httpstatmsg keyword is a content modifier that restricts the sear¢hd@xtracted Status Message field from a
HTTP server response.

As this keyword is a modifier to the previous 'content’ keydidhere must be a contentin the rule before 'Htat msg’
is specified.

The Status Message field will be extracted only if the extdm#@@onseinspection is configured for the Httpinspect

(sedZZ6).

Format

http_stat msg;

Examples

This rule constrains the search for the pattern "Not Foudihe extracted Status Message field of a HTTP server
response.

alert tcp any any -> any 80 (content:"ABC"; content: "Not Fou nd"; http_stat msg;)

ANOTE

Thehttp _stat _msg modifier is not allowed to be used with thavbytes or fast _pattern modifiers for
the same content.

139

3.5.18 http.encode

Thehttp _encode keyword will enable alerting based on encoding type preseatHTTP client request or a HTTP
server response (per the configuration of HttpInsphecilp.2.6

There are nine keyword associated witlp _encode . The keywords 'uri’, "Theader’ and 'cookie’ determine the HF
fields used to search for a particular encoding type. The kegs/utf8’, 'doubleencode’, 'nonascii’, 'base36’, 'uen-
code’ and 'barebyte’ determine the encoding type which would trigger thertal These keywords can be combined
using a OR operation. Negation is allowed on these keywords.

The config option 'normalizéaneaders’ needs to be turned on for rules to work with keywbehter'. The keyword
'cookie’ is depedent on config options 'enafmleokie’ and 'normalizecookies’ (se€2.216). This rule option will not
be able to detect encodings if the specified HTTP fields ar&l@RMALIZED.

| Option | Description |
uri Check for the specified encoding type in HTTP client requégt field.
header Ckeck for the specified encoding type in HTTP request or HT@dponse header
fields (depending on the packet flow)
cookie Check for the specified encoding type in HTTP request or HTEEpaonse cookig
header fields (depending on the packet flow)
utf8 Check for utf8 encoding in the specified buffer
double _encode | Check for double encoding in the specified buffer
non _ascii Check for non-ascii encoding in the specified buffer
base36 Check for base36 encoding in the specified buffer
uencode Check for u-encoding in the specified buffer
bare _byte Check for bare byte encoding in the specified buffer
Format

http_encode: <http buffer type>, [!] <encoding type>

http_encode: [urilheader|cookie], [!][<utf8|double_en code|non_ascii|base36|uencode|bare_byte>];
Examples

alert tcp any any -> any any (msg:"UTF8/UEncode Encoding pre sent"; http_encode:uri,utf8|uencode;)

alert tcp any any -> any any (msg:"No UTF8"; http_encode:uri Jutf8;)

ANOTE

Negation(!) and OR() operations cannot be used in conjunction with each othrethfohttp _encode key-
word. The OR and negation operations work only on the eneptiipe field and not on http buffer typ
field.

(9]

3.5.19 fastpattern

Thefast _pattern keyword is a content modifier that sets the content withinla to be used with the fast pattern
matcher. Since the default behavior of fast pattern detsation is to use the longest content in the rule, it is uséful i
a shorter content is more "unique” than the longer conteeammng the shorter content is less likely to be found in a
packet than the longer content.

The fast pattern matcher is used to select only those rudghitve a chance of matching by using a content in the rule
for selection and only evaluating that rule if the conteribisnd in the payload. Though this may seem to be overhead,
it can significantly reduce the number of rules that need tevaduated and thus increases performance. The better
the content used for the fast pattern matcher, the lesylikel rule will needlessly be evaluated.

140

As this keyword is a modifier to the previocantent keyword, there must becantent rule option in the rule before
fast _pattern is specified. Théast _pattern option may be specified only once per rule.

\NOTE

The fast _pattern modifier cannot be used with the following http content medsfi http _cookie |,
http _raw_uri , http _raw _header , http _raw_cookie , http _stat _code, http _stat _msg. Note, however,
that it is okay to use thiast _pattern modifier if another http content modifier not mentioned abisuesed
in combination with one of the above to modify the same canten

\NOTE

Thefast _pattern modifier can be used with negated contents only if those atsitre not modified with
offset , depth , distance or within

Format

Thefast _pattern option can be used alone or optionally take arguments. Whked alone, the meaning is simply
to use the specified content as the fast pattern contentdouta.

fast_pattern;

The optional argumeranly can be used to specify that the content should only be usdatiddast pattern matcher
and should not be evaluated as a rule option. This is us@fugxXample, if a known content must be located in the
payload independent of location in the payload, as it sawetie necessary to evaluate the rule option. Note that (1)
the modified content must be case insensitive since pateensserted into the pattern matcher in a case insensitive
manner, (2) negated contents cannot be used and (3) congemntet have any positional modifiers suchofiset
depth , distance or within

fast_pattern:only;

The optional argumentffset> <length> can be used to specify that only a portion of the content shbelused
for the fast pattern matcher. This is useful if the pattermeisy long and only a portion of the pattern is necessary to
satisfy "uniqueness” thus reducing the memory requireddceshe entire pattern in the fast pattern matcher.

fast_pattern:<offset>,<length>;

/!\NOTE

‘ The optional argumentmly and<offset> <length> are mutually exclusive.

Examples

This rule causes the pattern "[JKLMNO” to be used with the fedtern matcher, even though it is shorter than the
earlier pattern "ABCDEFGH".

alert tcp any any -> any 80 (content"ABCDEFGH"; content:"l JKLMNQ"; fast_pattern;)

This rule says to use the content "IJKLMNQO” for the fast pattmatcher and that the content should only be used for
the fast pattern matcher and not evaluated @m@nt rule option.

alert tcp any any -> any 80 (content:"ABCDEFGH"; content:"l JKLMNO"; nocase; fast_pattern:only;)
This rule says to use "JKLMN" as the fast pattern contentdhilltevaluate theontent rule option as "IJKLMNO”.

alert tcp any any -> any 80 (content"ABCDEFGH"; content:"l JKLMNQ"; fast_pattern:1,5;)

141

3.5.20 uricontent

Theuricontent keyword in the Snort rule language searches the NORMALIZ&dest URI field. This means that
if you are writing rules that include things that are norreadl, such as %2f or directory traversals, these rules will no
alert. The reason is that the things you are looking for arenadized out of the URI buffer.

For example, the URI:
Iscripts/..%c0%af../winnt/system32/cmd.exe?/c+ver
will get normalized into:
Iwinnt/system32/cmd.exe?/c+ver
Another example, the URI:
Icgi-bin/aaaaaaaaaaaaaaaaaaaaaaaaaal..%252fp%68f?
will get normalized into:
[cgi-bin/phf?

When writing auricontent rule, write the content that you want to find in the context the URI will be normalized.
For example, if Snort normalizes directory traversals, dbinclude directory traversals.

You can write rules that look for the non-normalized conteyntising the content option. (See Secfion3.5.1)
For a description of the parameters to this function, seedmgent rule options in Secti@gn 3.b.1.
This option works in conjunction with the HTTP Inspect pregessor specified in SectibnZ]2.6.

Format

uricontent:[!]<content string>;

ANOTE

‘ uricontent cannot be modified by @wbytes modifier.

3.5.21 urilen

Theurilen keyword in the Snort rule language specifies the exact letigghminimum length, the maximum length,
or range of URI lengths to match.

Format

urilen: int<>int;
urilen: [<,>] <int>;

The following example will match URIs that are 5 bytes long:
urilen: 5

The following example will match URIs that are shorter thaoy®es:

142

urilen: < 5
The following example will match URIs that are greater thavyfes and less than 10 bytes:
urilen: 5<>10

This option works in conjunction with the HTTP Inspect preessor specified in Sectibn 212.6.

3.5.22 isdataat

Verify that the payload has data at a specified locationpoplly looking for data relative to the end of the previous
content match.

Format

isdataat:[!] <int>[relative];

Example

alert tcp any any -> any 111 (content."PASS"; isdataat:50,r elative; \
content:!"|0al"; within:50;)

This rule looks for the string PASS exists in the packet, thenifies there is at least 50 bytes after the end of the string
PASS, then verifies that there is not a newline characteim bytes of the end of the PASS string.

A ! modifier negates the results of the isdataat test. It willtafea certain amount of data is not present within
the payload. For example, the rule with modifiesstent:"foo"; isdataat:!10,relative; would alert if there
were not 10 bytes after "foo” before the payload ended.

3.5.23 pcre

The pcre keyword allows rules to be written using perl coriigpfatregular expressions. For more detail on what can
be done via a pcre regular expression, check out the PCRE iteiis//www.pcre.org

Format

pere:[!]"(/<regex>/|m<delim><regex><delim>)[ismxAEG RUBPHMCOIDKYS]";

The post-re modifiers set compile time flags for the regularession. See tablESB[6.13.7, 3.8 for descriptions of
each modifier.

Table 3.6: Perl compatible modifiers fere
i | case insensitive
s | include newlines in the dot metacharacter
m | By default, the string is treated as one big line of charactérand $ match at
the beginning and ending of the string. When m is set, ~ andt$hmimmediately
following or immediately before any newline in the buffes,\aell as the very start
and very end of the buffer.
X | whitespace data characters in the pattern are ignored ewtem escaped or in
side a character class

143

http://www.pcre.org

Table 3.7: PCRE compatible modifiers fmre
A | the pattern must match only at the start of the buffer (sanig as
E | Set $ to match only at the end of the subject string. Withou$ Blso matcheg
immediately before the final character if it is a newline (bot before any othef
newlines).
G | Inverts the "greediness” of the quantifiers so that they ategneedy by default
but become greedy if followed by "?".

Table 3.8: Snort specific modifiers fpere
Match relative to the end of the last pattern match. (Simdatistance:0;)
Match the decoded URI buffers (Similaradcontent andhttp _uri)
Match the unormalized HTTP request uri buffer (Similahtip _raw _uri)
Match unnormalized HTTP request body (Similahttp _client _body)
Match normalized HTTP request or HTTP response header K8into
http _header)
Match unnormalized HTTP request or HTTP response headenilé®i to
http _raw _header)
M | Match normalized HTTP request method (Similahtip _method)
C | Match normalized HTTP request or HTTP response cookie (&imio
http _cookie)

IO —Cl>o

w)

K | Match unnormalized HTTP request or HTTP response cookiei(&i to
http _raw _cookie)
S | Match HTTP response status code (Similanttp _stat _code)
Y | Match HTTP response status message (Similattpo _stat _msg)
B | Do not use the decoded buffers (Similar to rawbytes)
O | Override the configured pcre match limit for this expresgidae sectioh Z.11.3)
\NOTE

The modifiers R and B should not be used together.

Example
This example performs a case-insensitive search for tirgdBL AH in the payload.

alert ip any any -> any any (pcre:"/BLAH/")

I
ANOTE

Snort’s handling of multiple URIs with PCRE does not work apected. PCRE when used without a
uricontent only evaluates the first URI. In order to use pcre to inspecURls, you must use either a

content or a uricontent.

3.5.24 filedata

This option is used to place the cursor (used to walk the gagkdoad in rules processing) at the beginning of either
the entity body of a HTTP response or the SMTP body data. Ttisiotakes no arguments.

Format

file_data;

144

This option matches if there is HTTP response body or SMTR/bdHis option option will operate similarly to the
dce _stub _data option added with DCE/RPC2, in that it simply sets a refeedioc other relative rule options (byte
test, byte jump, pcre) to use. ThHile _data can point to either a file or a block of data.

Example

alert tcp any any -> any any(msg:"foo at the start of the paylo ad"; file_data; pcre:"ffooli";)

3.5.25 Dbytetest

Test a byte field against a specific value (with operator).abépof testing binary values or converting representative
byte strings to their binary equivalent and testing them.

For a more detailed explanation, please read SeEfion 3.9.5.

Format
byte test: <bytes to convert>, [/]<operator>, <value>, <o ffset> |\
[relative] [,<endian>] [,<number type>, string];
| Option | Description

bytes _to _convert Number of bytes to pick up from the packet

operator Operation to perform to test the value:
e < -lessthan
e > - greater than
e =-equal
e ! -not
e & - bitwise AND
e " - bitwise OR

value Value to test the converted value against

offset Number of bytes into the payload to start processing

relative Use an offset relative to last pattern match

endian Endian type of the number being read:
e big - Process data as big endian (default)
e little - Process data as little endian

string Data is stored in string format in packet

number type Type of number being read:
e hex - Converted string data is represented in hexadecimal
e dec - Converted string data is represented in decimal
e oct - Converted string data is represented in octal

dce Let the DCE/RPC 2 preprocessor determine the byte ordeeofdlue to be con

verted. See sectidn 2.2]114 for a description and examplgsI@for quick refer-
ence).

145

Any of the operators can also inclutieo check if the operator is not true. llfis specified without an operator, then
the operator is set to.

ANOTE

Snort uses the C operators for each of these operators. & thgerator is used, then it would be the same as
usingif (data & value){ do_something()}

Examples

alert udp $EXTERNAL_NET any -> $HOME_NET any \
(msg:"AMD procedure 7 plog overflow "; \
content: "[00 04 93 F3|"; \
content: "[00 00 00 07|"; distance: 4; within: 4; \
byte test: 4,> 1000, 20, relative;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any \
(msg:"AMD procedure 7 plog overflow "; \
content: "[00 04 93 F3|"; \
content: "[00 00 00 07|"; distance: 4; within: 4; \
byte test: 4, >,1000, 20, relative;)

alert udp any any -> any 1234 \
(byte_test: 4, =, 1234, 0, string, dec; \
msg: "got 1234!")

alert udp any any -> any 1235\
(byte_test: 3, =, 123, 0, string, dec; \
msg: "got 123!")

alert udp any any -> any 1236 \
(byte_test: 2, =, 12, 0, string, dec; \
msg: "got 12!"))

alert udp any any -> any 1237 \
(byte_test: 10, =, 1234567890, 0, string, dec; \
msg: "got 1234567890!";)

alert udp any any -> any 1238 \
(byte_test: 8, =, Oxdeadbeef, 0, string, hex; \
msg: "got DEADBEEF!";)

3.5.26 bytejump

Thebyte _jump keyword allows rules to be written for length encoded protedrivially. By having an option that
reads the length of a portion of data, then skips that far &mdnwin the packet, rules can be written that skip over
specific portions of length-encoded protocols and perfogtection in very specific locations.

Thebyte _jump option does this by reading some number of bytes, convari theheir numeric representation, move
that many bytes forward and set a pointer for later detecfitis pointer is known as the detect offset end pointer, or
doeptr.

For a more detailed explanation, please read SeEfion 3.9.5.

146

Format

byte_jump: <bytes_to_convert>, <offset> \

[relative] [,multiplier <multiplier value>] [,big] [,li ttle][,string]\
[,hex] [,dec] [oct] [,align] [,from_beginning] [,post_o ffset <adjustment value>]J;
| Option | Description |
bytes _to _convert Number of bytes to pick up from the packet
offset Number of bytes into the payload to start processing
relative Use an offset relative to last pattern match
multiplier <value > | Multiply the number of calculated bytes kyalue > and skip forward that numt
ber of bytes.
big Process data as big endian (default)
little Process data as little endian
string Data is stored in string format in packet
hex Converted string data is represented in hexadecimal
dec Converted string data is represented in decimal
oct Converted string data is represented in octal
align Round the number of converted bytes up to the next 32-bit tayn
from _beginning Skip forward from the beginning of the packet payload indte&from the current]
position in the packet.
post _offset <value > | Skip forward or backwards (positive of negative valbg) <value > number of
bytes after the other jump options have been applied.
dce Let the DCE/RPC 2 preprocessor determine the byte ordeeofdlue to be con
verted. See sectidn 2.2114 for a description and examplEsI@for quick refer-
ence).
Example
alert udp any any -> any 32770:34000 (content: |00 01 86 B8|" i\

content: "[00 00 00 01|"; distance: 4; within: 4; \
byte jump: 4, 12, relative, align; \

byte test: 4, >, 900, 20, relative; \

msg: "statd format string buffer overflow";)

3.5.27 ftpbounce

The ftpbounce keyword detects FTP bounce attacks.

Format

ftpbounce;

Example

alert tcp $EXTERNAL_NET any -> $HOME_NET 21 (msg:"FTP PORT b ounce attempt"; \
flow:to_server,established; content."PORT"; nocase; ft pbounce; pcre:""'PORT/smi"\
classtype:misc-attack; sid:3441; rev:1;)

3.5.28 asnl

The ASN.1 detection plugin decodes a packet or a portion afcket, and looks for various malicious encodings.

147

Multiple options can be used in an 'asnl’ option and the iegpliogic is boolean OR. So if any of the arguments
evaluate as true, the whole option evaluates as true.

The ASN.1 options provide programmatic detection capislias well as some more dynamic type detection. If an
option has an argument, the option and the argument arestegdy a space or a comma. The preferred usage is to
use a space between option and argument.

Format

asnl: option[argument][, option][argument]] . . .

Option

Description

bitstring _overflow

Detects invalid bitstring encodings that are known to beatsty exploitable.

double _overflow

Detects a double ASCII encoding that is larger than a stahdaffer. This is
known to be an exploitable function in Microsoft, but it iskimown at this time
which services may be exploitable.

oversize _length <value >

Compares ASN.1 type lengths with the supplied argument.syh&ax looks like,
“oversizelength 500”. This means that if an ASN.1 type is greater thad, shen
this keyword is evaluated as true. This keyword must haveasgement which
specifies the length to compare against.

absolute _offset <value >

This is the absolute offset from the beginning of the pack&br example,
if you wanted to decode snmp packets, you would say “abswmiffiset 0”.
absolute _offset has one argument, the offset value. Offset may be pos
or negative.

tive

relative _offset <value >

This is the relative offset from the last content match orehkgst/jump.
relative _offset has one argument, the offset number. So if you wante
start decoding and ASN.1 sequence right after the content,{/ou would spec-
ify ’content:"foo"; asnl: bitstring_overflow, relative_off set O’

0 to

Offset values may be positive or negative.

Examples

alert udp any any -> any 161 (msg:"Oversize SNMP Length"; \
asnl: oversize_length 10000, absolute offset 0;)

alert tcp any any -> any 80 (msg:"ASN1 Relative Foo"; content

"foo"; \

asnl: bitstring_overflow, relative offset 0;)

3.5.29 cvs

The CVS detection plugin aids in the detection of: Bugtr@384, CVE-2004-0396: "Malformed Entry Modified and
Unchanged flag insertion”. Default CVS server ports are 2281514 and are included in the default ports for stream

reassembly.

ANOTE

‘ This plugin cannot do detection over encrypted sessiogs SSH (usually port 22).

Format

cvs:<option>;

148

Option Description
invalid-entry Looks for an invalid Entry string, which is a way of causing @ap overflow
(see CVE-2004-0396) and bad pointer derefenece in versidd¥'S 1.11.15 and
before.
Examples

alert tcp any any -> any 2401 (msg:"CVS Invalid-entry"; \
flow:to_server,established; cvs:invalid-entry;)

3.5.30 dceiface

See the DCE/RPC 2 Preprocessor sedfion 2.2.14 for a désariptd examples of using this rule option.

3.5.31 dceopnum

See the DCE/RPC 2 Preprocessor sedfion 2.2.14 for a deésariptd examples of using this rule option.

3.5.32 dcestub_data

See the DCE/RPC 2 Preprocessor sedfion 2.2.14 for a deésariptd examples of using this rule option.

3.5.33 sslversion

See the SSL/TLS Preprocessor seclion212.12 for a desgrigtid examples of using this rule option.

3.5.34 sslstate

See the SSL/TLS Preprocessor seclion212.12 for a desgrigtid examples of using this rule option.

3.5.35 Payload Detection Quick Reference

Table 3.9: Payload detection rule option keywords

Keyword Description

content The content keyword allows the user to set rules that searcdpkcific content in
the packet payload and trigger response based on that data.

rawbytes The rawbytes keyword allows rules to look at the raw packed,dgnoring any
decoding that was done by preprocessors.

depth The depth keyword allows the rule writer to specify how faoia packet Snor
should search for the specified pattern.

offset The offset keyword allows the rule writer to specify wherestart searching for a
pattern within a packet.

distance The distance keyword allows the rule writer to specify howirfido a packet Snor
should ignore before starting to search for the specifietepatelative to the eng
of the previous pattern match.

within The within keyword is a content modifier that makes sure thaiast N bytes arg
between pattern matches using the content keyword.

uricontent The uricontent keyword in the Snort rule language seardfesdrmalized reques
URI field.

—

149

isdataat The isdataat keyword verifies that the payload has data aafigul location.

pcre The pcre keyword allows rules to be written using perl conip@tregular expres;
sions.

byte _test The bytetest keyword tests a byte field against a specific value (witrator).

byte _jump The bytejump keyword allows rules to read the length of a portion afgd#hen
skip that far forward in the packet.

ftpbounce The ftpbounce keyword detects FTP bounce attacks.

asnl The asn1l detection plugin decodes a packet or a portion ofkepand looks for
various malicious encodings.

Vs The cvs keyword detects invalid entry strings.

dce _iface See the DCE/RPC 2 Preprocessor sediion 2.2.14.

dce _opnum See the DCE/RPC 2 Preprocessor sediion 2.2.14.

dce _stub _data See the DCE/RPC 2 Preprocessor sediion 2.2.14.

3.6 Non-Payload Detection Rule Options

3.6.1 fragoffset
The fragoffset keyword allows one to compare the IP fragroéiaet field against a decimal value. To catch all the first

fragments of an IP session, you could use the fragbits keyand look for the More fragments option in conjunction
with a fragoffset of 0.

Format

fragoffset:[<|>]<number>;

Example

alert ip any any -> any any \
(msg: "First Fragment"; fraghits: M; fragoffset: 0;)

3.6.2 ttl

The ttl keyword is used to check the IP time-to-live valueisTdption keyword was intended for use in the detection
of traceroute attempts.

Format

ttl:[[<number>-]><=]<number>;

Example

This example checks for a time-to-live value that is less tBa
ttl:<3;

This example checks for a time-to-live value that between®%

ttl:3-5;

150

3.6.3 tos

The tos keyword is used to check the IP TOS field for a specifigeva

Format

tos:[![<number>;

Example
This example looks for a tos value that is not 4

tos:4;

3.6.4 id

The id keyword is used to check the IP ID field for a specific galSome tools (exploits, scanners and other odd
programs) set this field specifically for various purposes,example, the value 31337 is very popular with some
hackers.

Format

id:<number>;

Example

This example looks for the IP ID of 31337.

id:31337;

3.6.5 ipopts

The ipopts keyword is used to check if a specific IP option &spnt.

The following options may be checked:

rr - Record Route

eol - End of list

nop - No Op

ts - Time Stamp

sec - IP Security

esec- IP Extended Security
Isrr - Loose Source Routing
ssrr - Strict Source Routing
satid - Stream identifier

any - any IP options are set

The most frequently watched for IP options are strict andéosource routing which aren’t used in any widespread
internet applications.

151

Format

ipopts:<rr|eol|nop|ts|sec|esec|Isrr|ssrr|satid|any> ;
Example
This example looks for the IP Option of Loose Source Routing.
ipopts:Isrr;

Warning

Only a single ipopts keyword may be specified per rule.

3.6.6 fragbits

Thefraghits keyword is used to check if fragmentation and reserved b&sat in the IP header.

The following bits may be checked:

M - More Fragments
D - Don't Fragment
R - Reserved Bit

The following modifiers can be set to change the match caiteri

+ match on the specified bits, plus any others
* match if any of the specified bits are set

I match if the specified bits are not set

Format

fragbits:[+*!]<[MDR]>;

Example

This example checks if the More Fragments bit and the Do rexjfRent bit are set.

fragbits:MD+;

3.6.7 dsize

The dsize keyword is used to test the packet payload size.riiy be used to check for abnormally sized packets. In
many cases, it is useful for detecting buffer overflows.

Format

dsize: [<>]<number>[<><number>];

152

Example

This example looks for a dsize that is between 300 and 40Gbyte

dsize:300<>400;

Warning

dsize will fail on stream rebuilt packets, regardless ofdize of the payload.

3.6.8 flags

The flags keyword is used to check if specific TCP flag bits agsqnt.

The following bits may be checked:

F - FIN (LSB in TCP Flags byte)

S -SYN

R -RST

P - PSH

A - ACK

U -URG

1 - Reserved bit 1 (MSB in TCP Flags byte)
2 - Reserved bit 2

0 - No TCP Flags Set

The following modifiers can be set to change the match caiteri

+ - match on the specified bits, plus any others
* - match if any of the specified bits are set

I - match if the specified bits are not set

To handle writing rules for session initiation packets sashECN where a SYN packet is sent with the previously
reserved bits 1 and 2 set, an option mask may be specified.eAaulld check for a flags value of S,12 if one wishes
to find packets with just the syn bit, regardless of the vahfake reserved bits.

Format

flags:[![*|+]<FSRPAU120>[<FSRPAU120>];

Example

This example checks if just the SYN and the FIN bits are sepiigg reserved bit 1 and reserved bit 2.

alert tcp any any -> any any (flags:SF,12;)

153

3.6.9 flow
The flow keyword is used in conjunction with TCP stream reasg (see Sectioi2.d.2). It allows rules to only apply
to certain directions of the traffic flow.

This allows rules to only apply to clients or servers. Thilewb packets related to $HOMEET clients viewing web
pages to be distinguished from servers running in the $SHONH.

The established keyword will replace thegs: A+ used in many places to show established TCP connections.

Options
| Option | Description
to _client Trigger on server responses from A to B
to _server Trigger on client requests from Ato B
from _client Trigger on client requests from A to B
from _server Trigger on server responses from A to B
established Trigger only on established TCP connections
stateless Trigger regardless of the state of the stream processofuluse packets that are
designed to cause machines to crash)
no_stream Do not trigger on rebuilt stream packets (useful for dsizeé sineam5)
only _stream Only trigger on rebuilt stream packets

Format

flow: [(established|stateless)]
J(to_client|to_server|from_client|from_server)]
,(no_stream|only_stream)];

—_——

Examples

alert tcp '$HOME_NET any -> $HOME_NET 21 (msg:"cd incoming d etected”; \
flow:from_client; content:"CWD incoming"; nocase;)

alert tcp !$HOME_NET 0 -> $HOME_NET 0 (msg: "Port 0 TCP traffi ¢\
flow:stateless;)

3.6.10 flowbits

Theflowbits keyword is used in conjunction with conversation trackiranf the Stream preprocessor (see SeEfionR.2.2).
It allows rules to track states during a transport protoesk#on. The flowbits option is most useful for TCP sessions,
as it allows rules to generically track the state of an ajgién protocol.

There are eight keywords associated with flowbits. Most ef dptions need a user-defined name for the specific
state that is being checked. This string should be limitedrtp alphanumeric string including periods, dashes, and
underscores. The keywords set and toggle take an optiomaiant which specifies the group to which the keywords
will belong. When no group name is specified the flowbits wildng to a default group. All the flowbits in a
particular group (with an exception of default group) aretmally exclusive. A particular flow cannot belong to more
than one group.

154

Option | Description |

set Sets the specified state for the current flow and unsets abttier flowbits in a
group when a GROURAME is specified.
unset Unsets the specified state for the current flow.
toggle Sets the specified state if the state is unset and unsetsaithier flowbits in a
group when a GROURAME is specified, otherwise unsets the state if the state
is set.
isset Checks if the specified state is set.
isnotset Checks if the specified state is not set.
noalert Cause the rule to not generate an alert, regardless of thefréke detection
options.
Format
flowbits: [setlunset|toggle|isset|reset|noalert][,<S TATE_NAME>][,<GROUP_NAME>];
Examples

alert tcp any 143 -> any any (msg:"IMAP login";
content:"OK LOGIN"; flowbits:set,logged_in;
flowbits:noalert;)

alert tcp any any -> any 143 (msg:"IMAP LIST"; content:"LIST ;
flowbits:isset,logged_in;)

3.6.11 seq

The seq keyword is used to check for a specific TCP sequencbarum

Format

seq:<number>;

Example

This example looks for a TCP sequence number of 0.

seq:0;

3.6.12 ack

The ack keyword is used to check for a specific TCP acknowledggber.

Format

ack: <number>;

155

Example

This example looks for a TCP acknowledge number of 0.

ack:0;

3.6.13 window

The window keyword is used to check for a specific TCP wind@e si

Format

window:[!]<number>;
Example
This example looks for a TCP window size of 55808.

window:55808;

3.6.14 itype

The itype keyword is used to check for a specific ICMP type @alu

Format

itype:[<|>]<number>[<><number>];

Example
This example looks for an ICMP type greater than 30.
itype:>30;

3.6.15 icode

The icode keyword is used to check for a specific ICMP codeevalu

Format

icode: [<|>]<number>[<><number>];

Example

This example looks for an ICMP code greater than 30.

code:>30;

156

3.6.16 icmpid

The icmpid keyword is used to check for a specific ICMP ID value.

This is useful because some covert channel programs ugel&&tP fields when they communicate. This particular
plugin was developed to detect the stacheldraht DDoS agent.

Format

icmp_id:<number>;

Example

This example looks for an ICMP ID of 0.
icmp_id:0;

3.6.17 icmpseq

The icmpseq keyword is used to check for a specific ICMP sequence value

This is useful because some covert channel programs ugel&&tP fields when they communicate. This particular
plugin was developed to detect the stacheldraht DDoS agent.

Format

icmp_seg:<number>;

Example

This example looks for an ICMP Sequence of 0.
icmp_seq:0;

3.6.18 rpc

The rpc keyword is used to check for a RPC application, varsiad procedure numbers in SUNRPC CALL requests.

Wildcards are valid for both version and procedure numbgnsding '*’;

Format

rpc: <application number>, [<version number>|*], [<proce dure number>[*]>;

Example

The following example looks for an RPC portmap GETPORT regue

alert tcp any any -> any 111 (rpc: 100000,*,3;);

157

Warning

Because of the fast pattern matching engine, the RPC keyiwaldwer than looking for the RPC values by using
normal content matching.

3.6.19 ipproto

The ip.proto keyword allows checks against the IP protocol heaBer.a list of protocols that may be specified by
name, see /etc/protocols.

Format

ip_proto:[!|>|<] <name or number>;

Example

This example looks for IGMP traffic.

alert ip any any -> any any (ip_proto:igmp;)

3.6.20 sameip

The sameip keyword allows rules to check if the source ipésséime as the destination IP.

Format

sameip;

Example

This example looks for any traffic where the Source IP and testiDation IP is the same.

alert ip any any -> any any (sameip;)

3.6.21 streamsize

The streansize keyword allows a rule to match traffic according to thenber of bytes observed, as determined by
the TCP sequence numbers.

ANOTE

‘ The streansize option is only available when the Stream5 preprocassarabled.

Format

stream_size:<server|client|both|either>,<operator>, <number>
Where the operator is one of the following:

e < -lessthan

158

> - greater than

=-equal

e !=-not

Example

<= - less than or equal

>= - greater than or equal

For example, to look for a session that is less that 6 bytem fre client side, use:

alert tcp any any -> any any (stream_size:client,<,6;)

3.6.22 Non-Payload Detection Quick Reference

Table 3.10: Non-payload detection rule option keywords

Keyword Description

fragoffset The fragoffset keyword allows one to compare the IP fragroéfset field against
a decimal value.

ttl The ttl keyword is used to check the IP time-to-live value.

tos The tos keyword is used to check the IP TOS field for a specifigeva

id The id keyword is used to check the IP ID field for a specific galu

ipopts The ipopts keyword is used to check if a specific IP option &spnt.

fragbits The fragbits keyword is used to check if fragmentation arsgreed bits are set in
the IP header.

dsize The dsize keyword is used to test the packet payload size.

flags The flags keyword is used to check if specific TCP flag bits aesqmnt.

flow The flow keyword allows rules to only apply to certain directs of the traffic
flow.

flowbits The flowbits keyword allows rules to track states during asgort protocol sest
sion.

seq The seq keyword is used to check for a specific TCP sequencbarum

ack The ack keyword is used to check for a specific TCP acknowledggber.

window The window keyword is used to check for a specific TCP wind@e si

itype The itype keyword is used to check for a specific ICMP type @alu

icode The icode keyword is used to check for a specific ICMP codeevalu

icmp _id The icmpid keyword is used to check for a specific ICMP ID value.

icmp _seq The icmpseq keyword is used to check for a specific ICMP sequence value

rpc The rpc keyword is used to check for a RPC application, varsiod procedure
numbers in SUNRPC CALL requests.

ip _proto The ip_proto keyword allows checks against the IP protocol header.

sameip The sameip keyword allows rules to check if the source ip & dhme as the
destination IP.

159

3.7 Post-Detection Rule Options

3.7.1 logto
The logto keyword tells Snort to log all packets that trigtfes rule to a special output log file. This is especially

handy for combining data from things like NMAP activity, HPTCGI scans, etc. It should be noted that this option
does not work when Snort is in binary logging mode.

Format

logto:"filename”;

3.7.2 session

The session keyword is built to extract user data from TCRias. There are many cases where seeing what users
are typing in telnet, rlogin, ftp, or even web sessions iy weseful.

There are two available argument keywords for the sessitenaption, printable or all. The printable keyword only
prints out data that the user would normally see or be ablgge.t

The all keyword substitutes non-printable characters thi#lir hexadecimal equivalents.
Format

session: [printablejall];

Example

The following example logs all printable strings in a telpatket.

log tcp any any <> any 23 (session:printable;)

Warnings

Using the session keyword can slow Snort down considerablit, should not be used in heavy load situations. The
session keyword is best suited for post-processing birprgy) log files.

3.7.3 resp

The resp keyword is used to attempt to close sessions whetedrisatriggered. In Snort, this is called flexible
response.

Flexible Response supports the following mechanisms fengiting to close sessions:

| Option | Description |
rst _snd Send TCP-RST packets to the sending sockgt
rst _rcv Send TCP-RST packets to the receiving socket
rst _all Send TCPRST packets in both directions

icmp _net Send a ICMPNET_UNREACH to the sender
icmp _host | Send a ICMPHOST_.UNREACH to the sendef
icmp _port | Send a ICMPPORT.UNREACH to the sendef
icmp _all Send all above ICMP packets to the sender

These options can be combined to send multiple responshks target host.

160

Format

resp: <resp_mechanism>[,<resp_mechanism>[,<resp_mech anism>]J;

Warnings

This functionality is not built in by default. Use the — —etefiexresp flag to configure when building Snort to enable
this functionality.

Be very careful when using Flexible Response. Itis quitg éaget Snort into an infinite loop by defining a rule such
as:

alert tcp any any -> any any (resp:rst_all;)

It is easy to be fooled into interfering with normal networaffic as well.

Example

The following example attempts to reset any TCP connectigrott 1524.

alert tcp any any -> any 1524 (flags:S; resp:rst_all))

3.7.4 react
This keyword implements an ability for users to react tofitathat matches a Snort rule. The basic reaction is
blocking interesting sites users want to access: New Yamesi, slashdot, or something really important - napster and
any inappropriate sites. The React code allows Snort taedgtclose offending connections and send a visible notice
to the browser. The notice may include your own comment. Bilewiing arguments (basic modifiers) are valid for
this option:

e block - close connection and send the visible notice

The basic argument may be combined with the following argusédditional modifiers):

e msg - include the msg option text into the blocking visibleic®

e proxy <portnr> - use the proxy port to send the visible notice

Multiple additional arguments are separated by a comma.r&aet keyword should be placed as the last one in the
option list.

Format

react: block[, <react additional_modifier>];

Example

alert tcp any any <> 192.168.1.0/24 80 (content; "bad.htm"; \
msg: "Not for children!"; react: block, msg, proxy 8000;)

161

Warnings

React functionality is not built in by default; you must capfie with —enable-react to build it. (Note that react may
now be enabled independently of flexresp and flexresp2.)

Be very careful when using react. Causing a network traffitegation loop is very easy to do with this functionality.

3.7.5 tag

The tag keyword allow rules to log more than just the singlekeathat triggered the rule. Once a rule is triggered,
additional traffic involving the source and/or destinatfost istagged Tagged traffic is logged to allow analysis of

response codes and post-attack tratfiggedalerts will be sent to the same output plugins as the origiteat, but it

is the responsibility of the output plugin to properly hamthese special alerts. Currently, the database outpuirplug

described in Sectidn Z.8.6, does not properly hataligedalerts.

Format

tag: <type>, <count>, <metric>, [direction];

type

e session - Log packets in the session that set off the rule

e host - Log packets from the host that caused the tag to activatss (alirection] modifier)
count

e <integer> - Count is specified as a number of units. Units are specifiier:metric> field.
metric

e packets - Tag the host/session fercount> packets
e seconds - Tag the host/session fercount> seconds
e bytes - Tag the host/session fercount> bytes

di recti on -only relevant if host type is used.
e Src - Tag packets containing the source IP address of the padekdagénerated the initial event.

e dst - Tag packets containing the destination IP address of thlegb#hat generated the initial event.

Note, any packets that generate an alert will not be taggedeXxample, it may seem that the following rule will tag
the first 600 seconds of any packet involving 10.1.1.1.

alert tcp any any <> 10.1.1.1 any (tag:host,600,seconds,sr c;)

However, since the rule will fire on every packet involving1.Q.1, no packets will get tagged. Tfiewbitsoption
would be useful here.

alert tcp any any <> 10.1.1.1 any (flowbits:isnotset,tagge d;
flowbits:set,tagged; tag:host,600,seconds,src;)

Also note that if you have a tag option in a rule that uses aimether tharpackets , atagged _packet _limit will

be used to limit the number of tagged packets regardless ethehtheseconds or bytes count has been reached.
The defaultagged _packet _limit value is 256 and can be modified by using a config option in yoartsconf file
(see Sectiol Z11.3 on how to use thgged _packet _limit config option). You can disable this packet limit for
a particular rule by adding packets metric to your tag option and setting its count to O (This cendone on a

162

global scale by setting thtagged _packet _limit option in snort.conf to 0). Doing this will ensure that paiskare

tagged for the full amount afeconds or bytes and will not be cut off by théagged _packet _limit . (Note that the
tagged _packet _limit was introduced to avoid DoS situations on high bandwidttssenfor tag rules with a high
seconds orbytes counts.)

alert tcp 10.1.1.4 any -> 10.1.1.1 any \
(content:"TAGMYPACKETS"; tag:host,0,packets,600,seco nds,src;)

Example

This example logs the first 10 seconds ortdgged _packet _limit (whichever comes first) of any telnet session.

alert tcp any any -> any 23 (flags:s,12; tag:session,10,sec onds;)

3.7.6 activates

The activates keyword allows the rule writer to specify a rule to add whermadific network event occurs. See
Sectior:3.216 for more information.

Format

activates: 1;

3.7.7 activatedby

Theactivated _by keyword allows the rule writer to dynamically enable a rulkem a specific activate rule is trig-
gered. See Sectién 3.P.6 for more information.

Format

activated_by: 1;

3.7.8 count

Thecount keyword must be used in combination with tetivated _by keyword. It allows the rule writer to specify
how many packets to leave the rule enabled for after it ivafetd. See Sectidn3.2.6 for more information.

Format

activated_by: 1; count: 50;

3.7.9 replace
Thereplace keyword is a feature available in inline mode which will cauUSnort to replace the prior matching

content with the given string. Both the new string and theteonit is to replace must have the same length. You can
have multiple replacements within a rule, one per content.

See sectiof 115 for more on operating in inline mode.

replace: <string>;

163

3.7.10 detectionfilter

detectionfilter defines a rate which must be exceeded by a source ondéeti host before a rule can generate an
event. detectiofilter has the following format:

detection_filter: \
track <by_srclby_dst>, \
count <c>, seconds <s>;

Option Description

track Rate is tracked either by source IP address or destinatiaddiress. This means

by _srclby _dst count is maintained for each unique source IP address orweaghe destination
IP address.

count ¢ The maximum number of rule matches in s seconds allowed &éfierdetection
filter limit to be exceeded. C must be nonzero.

seconds s Time period over which count is accrued. The value must beean

Snort evaluates detection _filter as the last step of the detection phase, after evaluatingttadr rule options
(regardless of the position of the filter within the rule szejr At most onaletection _filter is permitted per rule.

Example - this rule will fire on every failed login attempt finol0.1.2.100 during one sampling period of 60 seconds,
after the first 30 failed login attempts:

drop tcp 10.1.2.100 any > 10.1.1.100 22 (\
msg:"SSH Brute Force Attempt”;
flow:established,to_server; \
content:"SSH"; nocase; offset:0; depth:4; \
detection_filter: track by src, count 30, seconds 60; \
sid:1000001; rev:1;)

Since potentially many events will be generatedgtction _filter ~ would normally be used in conjunction with
anevent _filter to reduce the number of logged events.

3.7.11 Post-Detection Quick Reference

Table 3.11: Post-detection rule option keywords

Keyword Description

logto The logto keyword tells Snort to log all packets that trigtiés rule to a specia
output log file.

session The session keyword is built to extract user data from TCRiSas.

resp The resp keyword is used attempt to close sessions whenrarsateggered.

react This keyword implements an ability for users to react toficathat matches a
Snort rule by closing connection and sending a notice.

tag The tag keyword allow rules to log more than just the singlekpathat triggered
the rule.

activates This keyword allows the rule writer to specify a rule to addemta specific net;
work event occurs.

activated _by This keyword allows the rule writer to dynamically enableugerwhen a specifig
activate rule is triggered.

count This keyword must be used in combination with dutivated _by keyword. It
allows the rule writer to specify how many packets to leaweriie enabled for
after it is activated.

164

replace Replace the prior matching content with the given strindieftame length. Avalil
able in inline mode only.

detection _filter Track by source or destination IP address and if the ruleratise matches more
than the configured rate it will fire.

3.8 Rule Thresholds

ANOTE

Rule thresholds are deprecated and will not be supportedfiutuae release. Usdetection _filter s
@ Z10) within rules, oevent _filter s (ZZ2) as standalone configurations instead.

threshold can be included as part of a rule, or you can use standaloaeshiblds that reference the generator and
SID they are applied to. There is no functional differenceveen adding a threshold to a rule, or using a standalone
threshold applied to the same rule. There is a logical diffee. Some rules may only make sense with a threshold.
These should incorporate the threshold into the rule. Fstaimce, a rule for detecting a too many login password
attempts may require more than 5 attempts. This can be dang tine ‘limit’ type of threshold. It makes sense that
the threshold feature is an integral part of this rule.

Format

threshold: \
type <limit|threshold|both>, \
track <by_srclby_dst>, \
count <c¢>, seconds <s>;

Option Description
type limit|threshold|both typelimit alerts on the 1st m events during the time interval, theniigsevents
for the rest of the time interval. Typthreshold alerts every m times we see
this event during the time interval. Typeth alerts once per time interval afte
seeing m occurrences of the event, then ignores any adalittaments during the
time interval.
track by _srclby _dst rate is tracked either by source IP address, or destinafladtress. This means
count is maintained for each unique source IP addresses; ea€h unique desti
nation IP addresses. Ports or anything else are not tracked.

=

count ¢ number of rule matching in s seconds that will caagent _filter limit to be
exceededc must be nonzero value.
seconds s time period over whicltount is accrueds must be nonzero value.
Examples

This rule logs the first event of this SID every 60 seconds.

alert tcp $external_net any -> $http_servers $http_ports \

(msg:"web-misc robots.txt access"; flow:to_server, esta blished; \
uricontent:"/robots.txt"; nocase; reference:nessus,10 302; \
classtype:web-application-activity; threshold: type li mit, track \

by src, count 1 , seconds 60 ; sid:1000852; rev:1;)

165

This rule logs every 10th event on this SID during a 60 secatafval. So if less than 10 events occur in 60 seconds,
nothing gets logged. Once an event is logged, a new timegetawts for type=threshold.

alert tcp $external_net any -> S$http_servers $http_ports \

(msg:"web-misc robots.txt access"; flow:to_server, esta blished; \
uricontent:"/robots.txt"; nocase; reference:nessus,10 302; \
classtype:web-application-activity; threshold; type th reshold, \

track by dst, count 10 , seconds 60 ; sid:1000852; rev:1;)
This rule logs at most one event every 60 seconds if at leastdts on this SID are fired.

alert tcp $external_net any -> $http_servers $http_ports \

(msg:"web-misc robots.txt access"; flow:to_server, esta blished; \
uricontent:"/robots.txt"; nocase; reference:nessus,10 302; \
classtype:web-application-activity; threshold: type bo th , track \

by dst, count 10 , seconds 60 ; sid:1000852; rev:1;)

3.9 Writing Good Rules

There are some general concepts to keep in mind when dergl§piort rules to maximize efficiency and speed.

3.9.1 Content Matching

Snort groups rules by protocol (ip, tcp, udp, icmp), then byt (ip and icmp use slightly differnet logic), then by
those withcontent and those without. For rules wittontent , a multi-pattern matcher is used to select rules that
have a chance at matching based on a single content. Sgledi#s for evaluation via this "fast” pattern matcher was
found to increase performance, especially when appliedrgelrule groups like HTTP. The longer and more unique
acontent is, the less likely that rule and all of it’s rule options wileé evaluated unnecessarily - it's safe to say there
is generally more "good” traffic than "bad”. Rules withoedntent are always evaluated (relative to the protocol
and port group in which they reside), potentially puttingraglon performance. While some detection options, such
aspcre andbyte _test , perform detection in the payload section of the packey Hre not used by the fast pattern
matching engine. If at all possible, try and have at leastcontent (or uricontent) rule option in your rule.

3.9.2 Catch the Vulnerability, Not the Exploit

Try to write rules that target the vulnerability, insteadso$pecific exploit.

For example, look for a the vulnerable command with an argurtiet is too large, instead of shellcode that binds a
shell.

By writing rules for the vulnerability, the rule is less vlrable to evasion when an attacker changes the exploit
slightly.

3.9.3 Catch the Oddities of the Protocol in the Rule

Many services typically send the commands in upper casersettFTP is a good example. In FTP, to send the
username, the client sends:

user username_here
A simple rule to look for FTP root login attempts could be:

alert tcp any any -> any any 21 (content:"user root";)

166

While it mayseentrivial to write a rule that looks for the username root, a doole will handle all of the odd things
that the protocol might handle when accepting the user camdma

For example, each of the following are accepted by most FirRse

user root
user root
user root
user root
user<tab>root

To handle all of the cases that the FTP server might handieulle needs more smarts than a simple string match.

A good rule that looks for root login on ftp would be:

alert tcp any any -> any 21 (flow:to_server,established; \
content:"root"; pere:"fusen\s+root/i";)

There are a few important things to note in this rule:

e The rule has dlow option, verifying this is traffic going to the server on anaddished session.

e The rule has @ontentption, looking forroot, which is the longest, most unique string in the attack. dpison
is added to allow the fast pattern matcher to select thisfaulevaluation only if the contembot is found in the
payload.

e The rule has @creoption, looking for user, followed at least one space charguvhich includes tab), followed
by root, ignoring case.

3.9.4 Optimizing Rules
The content matching portion of the detection engine hasrsémn to handle a few evasion cases. Rules that are not
properly written can cause Snort to waste time duplicatimecks.

The way the recursion works now is if a pattern matches, aadyfof the detection options after that pattern fail, then
look for the pattern again after where it was found the presittime. Repeat until the pattern is not found again or the
opt functions all succeed.

On first read, that may not sound like a smart idea, but it isledeFor example, take the following rule:
alert ip any any -> any any (content:"a"; content."b"; withi n:1;)

This rule would look for “a”, immediately followed by “b”. Whout recursion, the payload “aab” would fail, even
though it is obvious that the payload “aab” has “a” immediafellowed by “b”, because the first "a” is not immedi-
ately followed by “b”".

While recursion is important for detection, the recursioplementation is not very smart.

For example, the following rule options are not optimized:
content:"|13|"; dsize:1;

By looking at this rule snippit, it is obvious the rule looks fa packet with a single byte of 0x13. However, because
of recursion, a packet with 1024 bytes of 0x13 could caus&16@ many pattern match attempts and 1023 too many
dsize checks. Why? The content 0x13 would be found in thelfist, then the dsize option would fail, and because
of recursion, the content 0x13 would be found again stadifitey where the previous 0x13 was found, once it is found,
then check the dsize again, repeating until 0x13 is not fonide payload again.

167

Reordering the rule options so that discrete checks (suatsias) are moved to the begining of the rule speed up
Snort.

The optimized rule snipping would be:
dsize:1; content"|13|";

A packet of 1024 bytes of 0x13 would fail immediately, as tisezd check is the first option checked and dsize is a
discrete check without recursion.

The following rule options are discrete and should gengtadl placed at the begining of any rule:

o dsize

o flags

o flow

o fraghits
e icmp _id
e icmp _seq
e icode

e id

e ipopts

e ip _proto
e itype

e seq

e session
o t0S

o ttl

e ack

e window
e resp

e sameip

3.9.5 Testing Numerical Values

The rule optiondbyte testandbytejumpwere written to support writing rules for protocols that bdength encoded
data. RPC was the protocol that spawned the requiremeritdsettwo rule options, as RPC uses simple length based
encoding for passing data.

In order to understangthybyte test and bytgump are useful, let's go through an exploit attempt agaimsisadmind
service.

This is the payload of the exploit:

168

89
00
40
49
00
00
00
00

7f 00 00 01 00 01 87 83 00 00 00 Oa 00 00 00 04
7f 00 00 01 00 01 87 83 00 00 00 Oa 00 00 00 11

00
00
49
00
00
00
00
2e

<snip>

09
00
28
54
00
00
00
00

00
00
54
00
00
00
00
2e

9c
00
3a
00
00
00
00
00

00
00
00
00
00
00
00

2f 62 69 6e 2f 73 68 00 00 00 00 00 04 1le

e2 00 00 00 00 00 00 00 02 00 01 87 88

Oa
10
00
00
00
00
00

le
00
00
00
00
00
15

00
00
00
00
00
00
00

00
00
00
00
00
00
2e

00
00
00
00
00
00
00

00
00
00
00
00
00
2e

00 01 00 00
00 Oa 4d 45
00 00 00 00
00 00 40 28
00 00 00 00
00 06 00 00
00 04 00 00

00 01 00
54 41 53
00 00 00
3a 14 00
00 00 00
00 00 00
00 00 00

00 00 20
50 4c 4f
00 00 00 itecerneen.
07 45 df
00 00 00
00 00 00
00 00 04

00 00 00 00 00 00 00 00 00 00
00 3b 4d 45 54 41 53 50 4c 4f
00 00 00 00 00 00 00 00 00 00 it..............
00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00
00 06 73 79 73 74 65 6d 00 00
2f 2e 2e 2f 2e 2e 2f 2e 2e 2f

........ system..
e L
.Ibin/sh.......

Let’s break this up, describe each of the fields, and figurdiowtto write a rule to catch this exploit.

There are a few things to note with RPC:

89
00
00
00
00
00
00
00

##
40
00
4d

00
00
00

00
00

The rest of the packet is the request that gets passed toduneck of sadmind.

e Numbers are written as uint32s, taking four bytes. The nur@Bavould show up as 0x0000001a.

e Strings are written as a uint32 specifying the length of thieg, the string, and then null bytes to pad the length

09
00
00
01
00
00
00
00

9c
00
00
87
00
00
00
00

e2
00
02
88
0a
01
01
20

- the

- pc type (call = 0, response = 1)

- rpc version (2)

- rpc program (0x00018788 = 100232 = sadmind)
- rpc program version (0x0000000a = 10)

- 1pC

procedure (0x00000001 = 1)

- credential flavor (1 = auth_unix)
- length of auth\ unix data (0x20 = 32

the next 32 bytes are the auth\ unix data
- unix timestamp (0x40283a10 = 1076378128 = feb 10 0
- length of the client machine name (0x0a = 10)

28
00
45

00
00
00

00
00

3a
00
54

00
00
00

00
00

10
0a
41

00
00
00

00
00

53 50 4c 4f 49 54 00 00

- metasploit

- uid of requesting user (0)
- gid of requesting user (0)
- extra group ids (0)

- verifier flavor (0 = auth\ null, aka none)

length of verifier (0, aka none)

request id, a random uint32, unique to each req

of the string to end on a 4 byte boundary. The string “bob” wiahow up as 0x00000003626f6200.

uest

1:55:28 2004 gmt)

However, we know the vulnerability is that sadmind truses tid coming from the client. sadmind runs any request
where the client’s uid is O as root. As such, we have decodedgmof the request to write our rule.

First, we need to make sure that our packet is an RPC call.

content:"|00 00 00 00|"; offset:4; depth:4;

169

Then, we need to make sure that our packet is a call to sadmind.
content:"|00 01 87 88|"; offset:12; depth:4;

Then, we need to make sure that our packet is a call to the guoed., the vulnerable procedure.
content:"|00 00 00 01|"; offset:16; depth:4;

Then, we need to make sure that our packet has awithcredentials.
content:"|00 00 00 01| offset:20; depth:4;

We don't care about the hostname, but we want to skip overdtcieck a number value after the hosthname. This is
where bytetest is useful. Starting at the length of the hostname, tkeewla have is:

00 00 00 Oa 4d 45 54 41 53 50 4c 4f 49 54 00 00
00 00 00 00 00 00 00 00 0O 0O 00 00 0O 0O 00 00
00 00 00 00

We want to read 4 bytes, turn it into a number, and jump thatynetes forward, making sure to account for the
padding that RPC requires on strings. If we do that, we areatow

00 00 00 00 OO 0O 00 00 00 OO 0O 00 00 00 OO 0O
00 00 00 00

which happens to be the exact location of the uid, the valuevarg to check.

In english, we want to read 4 bytes, 36 bytes from the beg@afrthe packet, and turn those 4 bytes into an integer
and jump that many bytes forward, aligning on the 4 byte bamyndio do that in a Snort rule, we use:

byte_jump:4,36,align;
then we want to look for the uid of O.
content:"|00 00 00 00|"; within:4;
Now that we have all the detection capabilities for our rig€s put them all together.

content:"|00 00 00 00|"; offset:4; depth:4;
content:"|00 01 87 88|"; offset:12; depth:4;
content:"|00 00 00 01|"; offset:16; depth:4;
content:"|00 00 00 01|"; offset:20; depth:4;
byte_jump:4,36,align;

content:"|00 00 00 00|"; within:4;

The 3rd and fourth string match are right next to each otteewe should combine those patterns. We end up with:

content:"|00 00 00 00|"; offset:4; depth:4;

content:"|00 01 87 88|"; offset:12; depth:4;

content:"|00 00 00 01 00 00 00 01|"; offset:16; depth:8;
byte_jump:4,36,align;

content:"|00 00 00 00|"; within:4;

170

If the sadmind service was vulnerable to a buffer overflow mireading the client’'s hostname, instead of reading the
length of the hostname and jumping that many bytes forwaedywauld check the length of the hostname to make
sure it is not too large.

To do that, we would read 4 bytes, starting 36 bytes into tle>aturn it into a number, and then make sure it is not
too large (let’s say bigger than 200 bytes). In Snort, we do:

byte_test:4,>,200,36;
Our full rule would be:

content:"|00 00 00 00|"; offset:4; depth:4;

content:"|00 01 87 88|"; offset:12; depth:4;

content:"|00 00 00 01 00 00 00 01]"; offset:16; depth:8;
byte_test:4,>,200,36;

171

Chapter 4

Making Snort Faster

4.1 MMAPed pcap

On Linux, a modified version of libpcap is available that iemlents a shared memory ring buffer. Phil Woods
(cpw@lanl.gov) is the current maintainer of the libpcap iempentation of the shared memory ring buffer. The shared
memory ring buffer libpcap can be downloaded from his webainttp:/public.lanl.gov/cpw/

Instead of the normal mechanism of copying the packets frermed memory into userland memory, by using a shared
memory ring buffer, libpcap is able to queue packets intoeaiesthbuffer that Snortis able to read directly. This change
speeds up Snort by limiting the number of times the packebded before Snort gets to perform its detection upon
it.

Once Snort linked against the shared memory libpcap, emglitie ring buffer is done via setting the enviornment
variable PCAPFRAMES PCAP FRAMESIs the size of the ring buffer. According to Phil, the maximgine is
32768, as this appears to be the maximum number of iovecstinelkcan handle. By usingCAP FRAMES=max
libpcap will automatically use the most frames possible.Edmernet, this ends up being 1530 bytes per frame, for a
total of around 52 Mbytes of memory for the ring buffer alone.

172

http://public.lanl.gov/cpw/

Chapter 5

Dynamic Modules

Preprocessors, detection capabilities, and rules can ealebeloped as dynamically loadable module to snort. When
enabled via the-enable-dynamicpluginonfigure option, the dynamic API presents a means for l@pdymamic
libraries and allowing the module to utilize certain fulcts within the main snort code.

The remainder of this chapter will highlight the data stawes and API functions used in developing preprocessors,
detection engines, and rules as a dynamic plugin to snort.

Beware: the definitions herein may be out of date; check tpecgpiate header files for the current definitions.

5.1 Data Structures

A number of data structures are central to the API. The dedmif each is defined in the following sections.

5.1.1 DynamicPluginMeta

TheDynamicPluginMetatructure defines the type of dynamic module (preprocessies, or detection engine), the
version information, and path to the shared library. A sHdiferary can implement all three types, but typically is
limited to a single functionality such as a preprocessas dtefined irsf _dynamic _meta.h as:

#define MAX_NAME_LEN 1024

#define TYPE_ENGINE 0x01
#define TYPE_DETECTION 0x02
#define TYPE_PREPROCESSOR 0x04

typedef struct _DynamicPluginMeta
{ «
int type;
int major;
int minor;
int build;
char uniqueName[MAX_NAME_LEN];
char *libraryPath;
} DynamicPluginMeta;

5.1.2 DynamicPreprocessorData

The DynamicPreprocessorDatstructure defines the interface the preprocessor usesai@attwith snort itself. This
inclues functions to register the preprocessor’s confitmaarsing, restart, exit, and processing functionsidhides

173

function to log messages, errors, fatal errors, and delmggmifo. It also includes information for setting alerts,
handling Inline drops, access to the StreamAPI, and it pleviaccess to the normalized http and alternate data
buffers. This data structure should be initialized when peprocessor shared library is loaded. It is defined in
sf _dynamic _preprocessor.h . Check the header file for the current definition.

5.1.3 DynamicEngineData

The DynamicEngineDatatructure defines the interface a detection engine usegdmat with snort itself. This
includes functions for logging messages, errors, fatalrerrand debugging info as well as a means to register and
check flowbits. It also includes a location to store rulebstfor dynamic rules that are loaded, and it provides access
to the normalized http and alternate data buffers. It is @effinsf _dynamic _engine.h as:

typedef struct _DynamicEngineData
{
int version;
u_int8_t *altBuffer;
Urilnfo *uriBuffersf]MAX_URIINFOS];
RegisterRule ruleRegister;
RegisterBit flowbitRegister;
CheckFlowbit flowbitCheck;
DetectAsnl asnlDetect;
LogMsgFunc logMsg;
LogMsgFunc errMsg;
LogMsgFunc fatalMsg;
char *dataDumpDirectory;

GetPreprocRuleOptFuncs getPreprocOptFuncs;

SetRuleData setRuleData;
GetRuleData getRuleData;

DebugMsgFunc debugMsg;
#ifdef HAVE_WCHAR_H
DebugWideMsgFunc debugWideMsg;
#endif

char **debugMsgFile;
int *debugMsgLine;

PCRECompileFunc pcreCompile;
PCREStudyFunc pcreStudy;
PCREExecFunc pcreExec;

} DynamicEngineData;

5.1.4 SFSnortPacket

The SFSnortPackestructure mirrors the snort Packet structure and providesss to all of the data contained in a
given packet.

It and the data structures it incorporates are definafl isnort _packet.h . Additional data structures may be defined
to reference other protocol fields. Check the header fileHfercurrent definitions.

174

5.1.5 Dynamic Rules

A dynamic rule should use any of the following data strucsufehe following structures are definedsin_snort _plugin _api.h .

Rule

The Rulestructure defines the basic outline of a rule and containsdinee set of information that is seen in a text
rule. That includes protocol, address and port informadiod rule information (classification, generator and sigreat
IDs, revision, priority, classification, and a list of reéeices). It also includes a list of rule options and an optiona
evaluation function.

#define RULE_MATCH 1
#define RULE_NOMATCH 0

typedef struct _Rule

{
[PInfo ip;
Rulelnformation info;
RuleOption **options; /* NULL terminated array of RuleOpti on union */
ruleEvalFunc evalFunc;
char initialized; [* Rule Initialized, used internally */
u_int32_t numOptions; /* Rule option count, used internall y *
char noAlert; [* Flag with no alert, used internally */
void *ruleData; /¥ Hash table for dynamic data pointers */
} Rule;

The rule evaluation function is defined as
typedef int (*ruleEvalFunc)(void *);

where the parameter is a pointer to the SFSnortPacketstauct

Rulelnformation

The Rulelnformationstructure defines the meta data for a rule and includes gemdE, signature ID, revision,
classification, priority, message text, and a list of refiess.

typedef struct _Rulelnformation
{
u_int32_t geniD;
u_int32_t siglD;
u_int32_t revision;
char *classification; /* String format of classification n ame */
u_int32_t priority;
char *message;
RuleReference **references; /* NULL terminated array of re ferences */
RuleMetaData **meta; /* NULL terminated array of reference s ¥
} Rulelnformation;

175

RuleReference

TheRuleReferencstructure defines a single rule reference, including theesysiame and rereference identifier.

typedef struct _RuleReference
{

char *systemName;

char *refldentifier;
} RuleReference;

IPInfo

ThelPInfo structure defines the initial matching criteria for a rulelamcludes the protocol, src address and port, des-
tination address and port, and direction. Some of the stdreldngs and variables are predefined - any, HQNIET,
HTTP_SERVERS, HTTBPORTS, etc.

typedef struct _IPInfo
{
u_int8_t protocol;
char * src_addr;
char * src_port; /¥ 0 for non TCP/UDP *
char direction; [* non-zero is bi-directional */
char * dst addr;
char * dst_port; /¥ 0 for non TCP/UDP */

} IPInfo;

#define ANY_NET "any"

#define HOME_NET "$HOME_NET"
#define EXTERNAL_NET "$EXTERNAL_NET"
#define ANY_PORT "any"

#define HTTP_SERVERS "$HTTP_SERVERS"
#define HTTP_PORTS "$HTTP_PORTS"

#define SMTP_SERVERS "$SMTP_SERVERS"

RuleOption

The RuleOptionstructure defines a single rule option as an option type arefesience to the data specific to that
option. Each option has a flags field that contains specifis flagthat option as well as a "Not” flag. The "Not” flag
is used to negate the results of evaluating that option.

typedef enum DynamicOptionType {
OPTION_TYPE_PREPROCESSOR,
OPTION_TYPE_CONTENT,
OPTION_TYPE_PCRE,
OPTION_TYPE_FLOWBIT,
OPTION_TYPE_FLOWFLAGS,
OPTION_TYPE_ASN1,
OPTION_TYPE_CURSOR,
OPTION_TYPE_HDR_CHECK,
OPTION_TYPE_BYTE_TEST,
OPTION_TYPE_BYTE_JUMP,
OPTION_TYPE_BYTE_EXTRACT,
OPTION_TYPE_SET_CURSOR,
OPTION_TYPE_LOOP,
OPTION_TYPE_MAX

176

3

typedef struct _RuleOption
{
int optionType;
union
{
void *ptr;
Contentinfo *content;
Cursorinfo *cursor;
PCREInfo *pcre;
FlowBitsInfo *flowBit;
ByteData *hyte;
ByteExtract *byteExtract;
FlowFlags *flowFlags;
AsnlContext *asni,
HdrOptCheck *hdrData;
Loopinfo *loop;
PreprocessorOption *preprocOpt;
} option_u;
} RuleOption;

#define NOT_FLAG 0x10000000

Some options also contain information that is initializédua time, such as the compiled PCRE information, Boyer-
Moore content information, the integer ID for a flowbit, etc.

The option types and related structures are listed below.

e OptionType: Content & Structure€ontentinfo

The Contentinfostructure defines an option for a content search. It incltldepattern, depth and offset, and
flags (one of which must specify the buffer — raw, URI or norized — to search). Additional flags include
nocase, relative, unicode, and a designation that thiseobig to be used for snorts fast pattern evaluation. The
most unique content, that which distinguishes this rule pessible match to a packet, should be marked for
fast pattern evaluation. In the dynamic detection engimeiged with Snort, if naContentinfostructure in a
given rules uses that flag, the one with the longest contagthewill be used.

typedef struct _Contentinfo

{
u_int8_t *pattern;
u_int32_t depth;
int32_t offset;
u_int32_t flags; [* must include a CONTENT BUF X *
void *hoyer_ptr;
u_int8_t *patternByteForm;
u_int32_t patternByteFormLength;
u_int32_t incrementLength;

} Contentlinfo;

#define CONTENT_NOCASE 0x01
#define CONTENT_RELATIVE 0x02
#define CONTENT_UNICODE2BYTE 0x04
#define CONTENT_UNICODE4BYTE 0x08
#define CONTENT_FAST_PATTERN 0x10
#define CONTENT_END_BUFFER 0x20

#define CONTENT_BUF_NORMALIZED 0x100

177

#define CONTENT_BUF_RAW 0x200
#define CONTENT_BUF_URI 0x400

OptionType: PCRE & Structurd®CREInfo

The PCRElInfostructure defines an option for a PCRE search. It includeP@RE expression, pciftags such
as caseless, as defined in PCRE.h, and flags to specify thez. buff

/*
pcre.h provides flags:

PCRE_CASELESS
PCRE_MULTILINE
PCRE_DOTALL
PCRE_EXTENDED
PCRE_ANCHORED
PCRE_DOLLAR_ENDONLY
PCRE_UNGREEDY

*/

typedef struct _PCREInfo

{

char *expr;

void *compiled_expr;

void *compiled_extra;

u_int32_t compile_flags;

u_int32_t flags; /* must include a CONTENT BUF X */
} PCREInfo;

OptionType: Flowbit & StructureFlowBitsInfo

TheFlowBitsInfostructure defines a flowbits option. It includes the name efflitwbit and the operation (set,
unset, toggle, isset, isnotset).

#define FLOWBIT_SET 0x01
#define FLOWBIT_UNSET 0x02
#define FLOWBIT_TOGGLE 0x04
#define FLOWBIT_ISSET 0x08
#define FLOWBIT_ISNOTSET 0x10
#define FLOWBIT_RESET 0x20
#define FLOWBIT_NOALERT 0x40

typedef struct _FlowBitsInfo

{
char *flowBitsName;
u_int8 t operation;
u_int32_t id;

u_int32_t flags;
} FlowBitsInfo;

OptionType: Flow Flags & Structuré&lowFlags

The FlowFlagsstructure defines a flow option. It includes the flags, whiokcsy the direction (fromserver,
to_server), established session, etc.

#define FLOW_ESTABLISHED 0x10
#define FLOW_IGNORE_REASSEMBLED 0x1000
#define FLOW_ONLY_REASSMBLED 0x2000

178

#define FLOW_FR_SERVER 0x40
#define FLOW_TO_CLIENT 0x40 /* Just for redundancy */
#define FLOW_TO_SERVER 0x80
#define FLOW_FR_CLIENT 0x80 /* Just for redundancy */

typedef struct _FlowFlags
{

u_int32_t flags;
} FlowFlags;

OptionType: ASN.1 & StructureAsn1Context

The Asnl1Contexstructure defines the information for an ASN1 option. It roierthe ASN1 rule option and
also includes a flags field.

#define ASN1_ABS_OFFSET 1
#define ASN1_REL_OFFSET 2

typedef struct _AsnlContext
{
int bs_overflow;
int double_overflow;
int print;
int length;
unsigned int max_length;
int offset;
int offset_type;
u_int32_t flags;
} AsnlContext;

OptionType: Cursor Check & Structur€ursorinfo

The Cursorinfostructure defines an option for a cursor evaluation. Theorussthe current position within the
evaluation buffer, as related to content and PCRE searabesell as byte tests and byte jumps. It includes an
offset and flags that specify the buffer. This can be usedtibmbere is sufficient data to continue evaluation,
similar to the isdataat rule option.

typedef struct _Cursorinfo

{
int32_t offset;

u_int32_t flags; I* specify one of CONTENT_BUF_X *
} Cursorlnfo;

OptionType: Protocol Header & StructutddrOptCheck

The HdrOptCheckstructure defines an option to check a protocol header foeaifép value. It incldues the
header field, the operation (j,¢,,=,etc), a value, a maskturégthat part of the header field, and flags.

#define IP_HDR_ID 0x0001 /* IP Header ID *

#define IP_HDR_PROTO 0x0002 /* IP Protocol */

#define IP_HDR_FRAGBITS 0x0003 /* Frag Flags set in IP Heade r*

#define IP_HDR_FRAGOFFSET 0x0004 /* Frag Offset set in IP He ader */
#define IP_HDR_OPTIONS 0x0005 /* IP Options -- is option xx i ncluded */
#define IP_HDR_TTL 0x0006 /* IP Time to live */

#define IP_HDR_TOS 0x0007 /* IP Type of Service */

#define IP_HDR_OPTCHECK_MASK 0x000f

#define TCP_HDR_ACK 0x0010 /* TCP Ack Value *

179

#define
#define
#define
#define
#define

#define
#define
#define
#define
#define

typedef
{

u_intl6 t hdrField;
u_int32_t op;
u_int32_t value;

TCP_HDR_SEQ
TCP_HDR_FLAGS
TCP_HDR_OPTIONS
TCP_HDR_WIN

0x0020 /* TCP Seq Value *

0x0030 /* Flags set in TCP Header */

0x0040 /* TCP Options -- is option x X included */
0x0050 /* TCP Window *

TCP_HDR_OPTCHECK_MASK 0x00f0

ICMP_HDR_CODE
ICMP_HDR_TYPE
ICMP_HDR_ID
ICMP_HDR_SEQ

0x1000 /* ICMP Header Code */
0x2000 /* ICMP Header Type */

0x3000 /* ICMP ID for ICMP_ECHO/ICMP_E = CHO_REPLY *

0x4000 /* ICMP ID for ICMP_ECHO/ICMP_ ECHO_REPLY *

ICMP_HDR_OPTCHECK_MASK 0xf000

struct _HdrOptCheck

[* Field to check */
[* Type of comparison */
[* Value to compare value against */

u_int32_t mask_value; /* bits of value to ignore */
u_int32_t flags;
} HdrOptCheck;

OptionType: Byte Test & Structur@yteData

The ByteDatastructure defines the information for both ByteTest and Byiep operations. It includes the
number of bytes, an operation (for ByteTest, j,¢,=,etchlae; an offset, multiplier, and flags. The flags must

specify the buffer.

#define CHECK_EQ 0

#define CHECK_NEQ 1

#define CHECK_LT 2

#define CHECK_GT 3

#define CHECK_LTE 4

#define CHECK_GTE 5

#define CHECK_AND 6

#define CHECK_XOR 7

#define CHECK_ALL 8

#define CHECK_ATLEASTONE 9

#define CHECK_NONE 10

typedef struct _ByteData

{
u_int32_t bytes; ¥ Number of bytes to extract */
u_int32_t op; * Type of byte comparison, for checkValue */
u_int32_t value; [* Value to compare value against, for chec kValue, or extracted value */
int32_t offset; [* Offset from cursor */
u_int32_t multiplier; /* Used for byte jump -- 32bits is MORE than enough */
u_int32_t flags; /¥ must include a CONTENT_BUF_X *

} ByteData;

OptionType: Byte Jump & Structur®yteData
SeeByte Tesabove.

OptionType: Set Cursor & Structur€ursorinfo
SeeCursor Checlabove.

OptionType: Loop & Structured:ooplnfo,ByteExtract,DynamicElement

TheLooplInfostructure defines the information for a set of options thattarbe evaluated repeatedly. The loop
option acts like a FOR loop and includes start, end, and imerg values as well as the comparison operation for

180

termination. It includes a cursor adjust that happens thin@ach iteration of the loop, a reference to a Rulelnfo
structure that defines the RuleOptions are to be evaluateddh each iteration. One of those options may be a
ByteExtract.

typedef struct _Loopinfo

{
DynamicElement *start; [* Starting value of FOR loop (i=sta) *
DynamicElement *end; ¥ Ending value of FOR loop (i OP end) *
DynamicElement *increment; /* Increment value of FOR loop (i+= increment) */
u_int32_t op; [* Type of comparison for loop termination */
Cursorinfo *cursorAdjust; /* How to move cursor each iterat ion of loop */
struct _Rule *subRule; [* Pointer to SubRule & options to eva luate within
* the loop */
u_int8_t initialized; ¥ Loop initialized properly (safeg uard) */
u_int32_t flags; /¥ can be used to negate loop results, speci fies
} Looplnfo;

TheByteExtracstructure defines the information to use when extractingbfdr a DynamicElement used a in
Loop evaltion. It includes the number of bytes, an offsetltiplier, flags specifying the buffer, and a reference
to the DynamicElement.

typedef struct _ByteExtract

{
u_int32_t bytes; /¥ Number of bytes to extract */
int32_t offset; [* Offset from cursor */
u_int32_t multiplier; /* Multiply value by this (similar to byte jump) */
u_int32_t flags; /¥ must include a CONTENT_BUF_X *
char *refld; [* To match up with a DynamicElement refld */
void *memoryLocation; /* Location to store the data extract ed *

} ByteExtract;
The DynamicElemenstructure is used to define the values for a looping evalnatlbincludes whether the

element is static (an integer) or dynamic (extracted fronufeb in the packet) and the value. For a dynamic
element, the value is filled by a related ByteExtract optluat ts part of the loop.

#define DYNAMIC_TYPE_INT_STATIC 1
#define DYNAMIC_TYPE_INT REF 2

typedef struct _DynamicElement

{
char dynamicType; I* type of this field - static or reference *
char *refld; * reference ID (NULL if static) */
union
{
void *voidPtr; [* Holder */
int32_t staticlnt; [* Value of static */
int32_t *dynamicint; /* Pointer to value of dynamic */
} data;

} DynamicElement;

5.2 Required Functions

Each dynamic module must define a set of functions and daéeistip work within this framework.

181

5.2.1 Preprocessors

Each dynamic preprocessor library must define the folloviimgtions. These are defined in the fife dynamic _preproc _lib.c
The metadata and setup function for the preprocessor sheul@finedf _preproc _info.h

e int LibVersion(DynamicPluginMeta *)
This function returns the metadata for the shared library.

e int InitializePreprocessor(DynamicPreprocessorData *)

This function initializes the data structure for use by tleppocessor into a library global variablelpd and
invokes the setup function.

5.2.2 Detection Engine

Each dynamic detection engine library must define the faligvfunctions.

¢ int LibVersion(DynamicPluginMeta *)
This function returns the metadata for the shared library.

e int InitializeEngineLib(DynamicEngineData *)
This function initializes the data structure for use by thgiae.

The sample code provided with Snort predefines those fumetémd defines the following APIs to be used by a
dynamic rules library.

¢ int RegisterRules(Rule **)

This is the function to iterate through each rule in the ligitjalize it to setup content searches, PCRE evalution
data, and register flowbits.

e int DumpRules(char *,Rule **)

This is the function to iterate through each rule in the lisdl avrite a rule-stop to be used by snort to control the
action of the rule (alert, log, drop, etc).

e int ruleMatch(void *p, Rule *rule)

This is the function to evaluate a rule if the rule does nothitsyown Rule Evaluation Function. This uses the
individual functions outlined below for each of the rule iopts and handles repetitive content issues.

Each of the functions below returns RULMATCH if the option matches based on the current criteriagou
position, etc).

— int contentMatch(void *p, ContentInfo* contentjnt8_t **cursor)

This function evaluates a single content for a given paattetcking for the existence of that content as
delimited by ContentInfo and cursor. Cursor position is afgd and returned in *cursor.

With a text rule, the with option corresponds to depth, arddistance option corresponds to offset.
— int checkFlow(void *p, FlowFlags *flowflags)
This function evaluates the flow for a given packet.

— int extractValue(void *p, ByteExtract *byteExtractjnt8_t *cursor)

This function extracts the bytes from a given packet, asiipddy ByteExtract and delimited by cursor.
Value extracted is stored in ByteExtract memoryLocatiorapater.

— int processFlowbits(void *p, FlowBitsInfo *flowbits)

This function evaluates the flowbits for a given packet, acgi@d by FlowBitsInfo. It will interact with
flowbits used by text-based rules.

182

— int setCursor(void *p, Cursorinfo *cursorinfo, int8_t **cursor)

This function adjusts the cursor as delimited by Cursorlifiew cursor position is returned in *cursor.
It handles bounds checking for the specified buffer and nstRULENOMATCH if the cursor is moved
out of bounds.

It is also used by contentMatch, byteJump, and pcreMatchjtestthe cursor position after a successful
match.
— int checkCursor(void *p, Cursorinfo *cursorinfo, mt8_t *cursor)
This function validates that the cursor is within boundshaf specified buffer.
— int checkValue(void *p, ByteData *byteDatajnt32 t value, uint8_t *cursor)
This function compares thealueto the value stored in ByteData.
— int byteTest(void *p, ByteData *byteData,int8_t *cursor)
This is a wrapper for extractValue() followed by checkVdlue
— int byteJump(void *p, ByteData *byteData,int8_t **cursor)
This is a wrapper for extractValue() followed by setCur¥or(
— int pcreMatch(void *p, PCREInfo *pcre,_int8_t **cursor)
This function evaluates a single pcre for a given packetcking for the existence of the expression as
delimited by PCREInfo and cursor. Cursor position is updabed returned in *cursor.
— int detectAsnl(void *p, Asn1Context *asnlint8_t *cursor)
This function evaluates an ASN.1 check for a given packedgetimited by Asn1Context and cursor.
— int checkHdrOpt(void *p, HdrOptCheck *optData)
This function evaluates the given packet's protocol hesdes specified by HdrOptCheck.
— int loopEval(void *p, LoopInfo *loop, Lint8_t **cursor)
This function iterates through the SubRule of Looplinfo, atindited by Loopinfo and cursor. Cursor
position is updated and returned in *cursor.
— int preprocOptionEval(void *p, PreprocessorOption *prepOpt, uint8_t **cursor)
This function evaluates the preprocessor defined optiospapcifed by PreprocessorOption. Cursor po-
sition is updated and returned in *cursor.
— void setTempCursor(int8_t **temp_cursor, uint8_t **cursor)
This function is used to handled repetitive contents to sdfva cursor position temporarily to be reset at
later point.
— void revertTempCursor(int8_t **temp_cursor, uint8_t **cursor)
This function is used to revert to a previously saved temgyorarsor position.

ANOTE

If you decide to write you own rule evaluation function, jeatts that occur more than once may result in false
negatives. Take extra care to handle this situation andlséarthe matched pattern again if subsequent fule
options fail to match. This should be done for both contedtRERE options.

5.2.3 Rules

Each dynamic rules library must define the following funoBoExamples are defined in the 8feort _dynamic _detection _lib.c
The metadata and setup function for the preprocessor sheul@fined irsfsnort _dynamic _detection _lib.h

e int LibVersion(DynamicPluginMeta *)
This function returns the metadata for the shared library.

¢ int EngineVersion(DynamicPluginMeta *)
This function defines the version requirements for the qpoading detection engine library.

183

e int DumpSkeletonRules()
This functions writes out the rule-stubs for rules that asded.

e int InitializeDetection()

This function registers each rule in the rules library. loshl set up fast pattern-matcher content, register
flowbits, etc.

The sample code provided with Snort predefines those fumctod uses the following data within the dynamic rules
library.

e Rule *rules|]
A NULL terminated list of Rule structures that this librargfthes.

5.3 Examples

This section provides a simple example of a dynamic premsmreand a dynamic rule.

5.3.1 Preprocessor Example

The following is an example of a simple preprocessor. Thepprcessor always alerts on a Packet if the TCP port
matches the one configured.

This assumes the the filskdynamicpreproclib.c andsf.dynamicpreproclib.h are used.

This is the metadata for this preprocessor, definext preprocinfo.h.

#define MAJOR_VERSION 1
#define MINOR_VERSION 0
#define BUILD_VERSION 0
#define PREPROC_NAME "SF_Dynamic_Example_Preprocessor "

#define DYNAMIC_PREPROC_SETUP ExampleSetup
extern void ExampleSetup();

The remainder of the code is definedsppexample.and is compiled together witkf dynamicpreproclib.c into
lib_sfdynamicpreprocessaexample.so.

Define the Setup function to register the initializationdtion.

#define GENERATOR_EXAMPLE 256
extern DynamicPreprocessorData _dpd;

void Examplelnit(unsigned char *);
void ExampleProcess(void *, void *);

void ExampleSetup()
{

_dpd.registerPreproc("dynamic_example"”, Examplelnit) ;

DEBUG_WRAP(_dpd.debugMsg(DEBUG_PLUGIN, "Preprocessor : Example is setup\n"););
The initialization function to parse the keywords frenort.conf

184

u_int16_t portToCheck;

void Examplelnit(unsigned char *args)

{
char *arg;
char *argEnd;
unsigned long port;
_dpd.logMsg("Example dynamic preprocessor configuratio n\n");
arg = strtok(args, " \t\n\r");
if('strcasecmp(“port", arg))
{
arg = strtok(NULL, "\t\n\r");
if (‘arg)
{
_dpd.fatalMsg("ExamplePreproc: Missing port\n");
}
port = strtoul(arg, &argEnd, 10);
if (port < 0 || port > 65535)
_dpd.fatalMsg("ExamplePreproc: Invalid port %d\n", port);
}
portToCheck = port;
_dpd.logMsg(" Port: %d\n", portToCheck);
}
else
_dpd.fatalMsg("ExamplePreproc: Invalid option %s\n", ar Q);
}
I* Register the preprocessor function, Transport layer, ID 10000 */
_dpd.addPreproc(ExampleProcess, PRIORITY_TRANSPORT, 1 0000);
DEBUG_WRAP(_dpd.debugMsg(DEBUG_PLUGIN, "Preprocessor : Example is initialized\n"););
}

The function to process the packet and log an alert if theeeilort matches.

#define SRC_PORT_MATCH 1
#define SRC_PORT_MATCH_STR "example_preprocessor: src p ort match"
#define DST_PORT_MATCH 2

#define DST_PORT_MATCH_STR "example_preprocessor: dest port match"
void ExampleProcess(void *pkt, void *context)
{
SFSnortPacket *p = (SFSnortPacket *)pkt;
if (Ip->ip4_header || p->ip4_header->proto != IPPROTO_TC P || !p->tcp_header)
{
[* Not for me, return */
return;
}
if (p->src_port == portToCheck)
{

185

[* Source port matched, log alert */
_dpd.alertAdd(GENERATOR_EXAMPLE, SRC_PORT_MATCH,
1, 0, 3, SRC_PORT_MATCH_STR, 0);

return;
}
if (p->dst_port == portToCheck)
{
[* Destination port matched, log alert */
_dpd.alertAdd(GENERATOR_EXAMPLE, DST_PORT_MATCH,
1, 0, 3, DST_PORT_MATCH_STR, 0);
return;
}
}
5.3.2 Rules

The following is an example of a simple rule, take from therent rule set, SID 109. It is implemented to work with
the detection engine provided with snort.

The snort rule in normal format:

alert tcp $HOME_NET 12345:12346 -> $EXTERNAL_NET any \
(msg:"BACKDOOR nethus active"; flow:from_server,establ ished; \
content:"NetBus"; reference:arachnids,401; classtype: misc-activity; \
sid:109; rev:5;)

This is the metadata for this rule library, definedietectionlib_meta.h

¥ Version for this rule library */

#define DETECTION_LIB_MAJOR_VERSION 1

#define DETECTION_LIB_MINOR_VERSION 0

#define DETECTION_LIB_BUILD_VERSION 1

#define DETECTION_LIB_NAME "Snort_Dynamic_Rule_Exampl e"

[* Required version and name of the engine */
#define REQ_ENGINE_LIB_MAJOR_VERSION 1
#define REQ_ENGINE_LIB_MINOR_VERSION 0
#define REQ_ENGINE_LIB_NAME "SF_SNORT_DETECTION_ENGI"

The definition of each data structure for this rule isid109.c

Declaration of the data structures.

e Flow option
Define tha-lowFlagsstructure and its correspondiRyileOption Per the text version, flow is froreerver,established.

static FlowFlags sid109flow =

{
FLOW_ESTABLISHED|FLOW_TO_CLIENT
|3
static RuleOption sid109optionl =
{

186

OPTION_TYPE_FLOWFLAGS,
{

}

&sid109flow
3

e Content Option

Define theContentinfostructure and its correspondifuleOption Per the text version, content is "NetBus”,
no depth or offset, case sensitive, and non-relative. 8eamahe normalized buffer by defaulNOTE: This
content will be used for the fast pattern matcher since liéddngest content option for this rule and no contents
have a flag ofCONTENTFASTPATTERN

static Contentinfo sid109content =

{
“NetBus", [* pattern to search for */
0, ¥ depth */
0, I* offset */
CONTENT_BUF_NORMALIZED, /* flags */
NULL, * holder for boyer/moore info */
NULL, * holder for byte representation of "NetBus" */
0, * holder for length of byte representation */
0 * holder for increment length */
3
static RuleOption sid109option2 =
{
OPTION_TYPE_CONTENT,
{
&sid109content
}
3

e Rule and Meta Data
Define the references.

static RuleReference sid109ref arachnids =

{
"arachnids", ¥ Type */
401" [* value *
13
static RuleReference *sid109refs[] =
{
&sid109ref_arachnids,
NULL
13

The list of rule options. Rule options are evaluated in thadeospecified.

RuleOption *sid109options[] =

{
&sid109optionl,
&sid109option2,
NULL

3

187

The rule itself, with the protocl header, meta data (sidssifecation, message, etc).

Rule sid109 =
{
I* protocol header, akin to => tcp any any -> any any */
{
IPPROTO_TCP, [* proto *
HOME_NET, * source IP */
"12345:12346", ¥ source port(s) */
0, [* Direction */
EXTERNAL_NET, [* destination IP *
ANY_PORT, [* destination port */
13
* metadata */
{
3, ¥ genid -- use 3 to distinguish a C rule *
109, I* sigid *
5, I* revision */
"misc-activity", [* classification */
0, [* priority */
"BACKDOOR netbus active", [* message */
sid109refs ¥ ptr to references */
13
sid109options, [* ptr to rule options */
NULL, * Use internal eval func */
0, [* Holder, not yet initialized, used internally */
0, [* Holder, option count, used internally *
0, [* Holder, no alert, used internally for flowbits */
NULL ¥ Holder, rule data, used internally */

e The List of rules defined by this rules library

The NULL terminated list of rules. The InitializeDetectigarates through each Rule in the list and initializes
the content, flowbits, pcre, etc.

extern Rule sid109;
extern Rule sid637;

Rule *rules] =

{
&sid109,
&sid637,
NULL

3

188

Chapter 6

Snort Development

Currently, this chapter is here as a place holder. It will eday contain references on how to create new detection
plugins and preprocessors. End users don’t really need tedufng this section. This is intended to help developers
get a basic understanding of whats going on quickly.

If you are going to be helping out with Snort developmentapkeuse thelEAD branch of cvs. We've had problems
in the past of people submitting patches only to the staldadir (since they are likely writing this stuff for their own
IDS purposes). Bugfixes are what goes iat@BLE. Features go intelEAD.

6.1 Submitting Patches

Patches to Snort should be sent to shert-devel@lists.sourceforge.net mailing list. Patches should done
with the commandiff -nu snort-orig snort-new

6.2 Snort Data Flow

First, traffic is acquired from the network link via libpcapackets are passed through a series of decoder routines that
first fill out the packet structure for link level protocolsthare further decoded for things like TCP and UDP ports.

Packets are then sent through the registered set of pregsarse Each preprocessor checks to see if this packet is
something it should look at.

Packets are then sent through the detection engine. Thetidet&ngine checks each packet against the various
options listed in the Snort rules files. Each of the keywortlans is a plugin. This allows this to be easily extensible.

6.2.1 Preprocessors

For example, a TCP analysis preprocessor could simplyrétttine packet does not have a TCP header. It can do this
by checking:

if (p->tcph==null)
return;

Similarly, there are a lot of packéfags available that can be used to mark a packet as “reasséhabnllogged. Check
out src/decode.h for the list of pktconstants.

189

6.2.2 Detection Plugins

Basically, look at an existing output plugin and copy it toeawitem and change a few things. Later, we’ll document
what these few things are.

6.2.3 Output Plugins

Generally, new output plugins should go into the barnyamjgmt rather than the Snort project. We are currently
cleaning house on the available output options.

190

6.3 The Snort Team

Creator and Lead Architect Marty Roesch

Lead Snort Developers Steve Sturges
Todd Wease
Russ Combs

Ryan Jordan
Dilbagh Chahal
Bhagyashree Bantwal

Snort Rules Maintainer Brian Caswell
Snort Rules Team Nigel Houghton
Alex Kirk

Matt Watchinski
Win32 Maintainer Snort Team

RPM Maintainers JP Vossen
Daniel Wittenberg

Inline Developers Victor Julien
Rob McMillen
William Metcalf

Major Contributors Erek Adams
Andrew Baker
Scott Campbell
Roman D.
Michael Davis
Chris Green
Jed Haile
Jeremy Hewlett
Glenn Mansfield Keeni
Adam Keeton
Chad Kreimendahl
Kevin Liu
Andrew Mullican
Jeff Nathan
Marc Norton
Judy Novak
Andreas Ostling
Chris Reid
Daniel Roelker
Dragos Ruiu
Fyodor Yarochkin
Phil Wood

191

Bibliography

[1] http://packetstorm.securify.com/mag/phrack/pe@/p49-06
[2] http://www.nmap.org

[3] http://public.pacbell.net/dedicated/cidr.html

[4] http://www.whitehats.com

[5] http://www.incident.org/snortdb

[6] http://www.pcre.org

192

	Snort Overview
	Getting Started
	Sniffer Mode
	Packet Logger Mode
	Network Intrusion Detection System Mode
	NIDS Mode Output Options
	Understanding Standard Alert Output
	High Performance Configuration
	Changing Alert Order

	Inline Mode
	Snort Inline Rule Application Order
	Replacing Packets with Snort Inline
	Installing Snort Inline
	Running Snort Inline
	Using the Honeynet Snort Inline Toolkit
	Troubleshooting Snort Inline

	Miscellaneous
	Running Snort as a Daemon
	Running in Rule Stub Creation Mode
	Obfuscating IP Address Printouts
	Specifying Multiple-Instance Identifiers

	Reading Pcaps
	Command line arguments
	Examples

	Tunneling Protocol Support
	Multiple Encapsulations
	Logging

	More Information

	Configuring Snort
	Includes
	Format
	Variables
	Config

	Preprocessors
	Frag3
	Stream5
	sfPortscan
	RPC Decode
	Performance Monitor
	HTTP Inspect
	SMTP Preprocessor
	FTP/Telnet Preprocessor
	SSH
	DCE/RPC
	DNS
	SSL/TLS
	ARP Spoof Preprocessor
	DCE/RPC 2 Preprocessor
	Sensitive Data Preprocessor

	Decoder and Preprocessor Rules
	Configuring
	Reverting to original behavior

	Event Processing
	Rate Filtering
	Event Filtering
	Event Suppression
	Event Logging

	Performance Profiling
	Rule Profiling
	Preprocessor Profiling
	Packet Performance Monitoring (PPM)

	Output Modules
	alert_syslog
	alert_fast
	alert_full
	alert_unixsock
	log_tcpdump
	database
	csv
	unified
	unified 2
	alert_prelude
	log null
	alert_aruba_action
	Log Limits

	Host Attribute Table
	Configuration Format
	Attribute Table File Format

	Dynamic Modules
	Format
	Directives

	Reloading a Snort Configuration
	Enabling support
	Reloading a configuration
	Non-reloadable configuration options

	Multiple Configurations
	Creating Multiple Configurations
	Configuration Specific Elements
	How Configuration is applied?

	Writing Snort Rules
	The Basics
	Rules Headers
	Rule Actions
	Protocols
	IP Addresses
	Port Numbers
	The Direction Operator
	Activate/Dynamic Rules

	Rule Options
	General Rule Options
	msg
	reference
	gid
	sid
	rev
	classtype
	priority
	metadata
	General Rule Quick Reference

	Payload Detection Rule Options
	content
	nocase
	rawbytes
	depth
	offset
	distance
	within
	http_client_body
	http_cookie
	http_raw_cookie
	http_header
	http_raw_header
	http_method
	http_uri
	http_raw_uri
	http_stat_code
	http_stat_msg
	http_encode
	fast_pattern
	uricontent
	urilen
	isdataat
	pcre
	file_data
	byte_test
	byte_jump
	ftpbounce
	asn1
	cvs
	dce_iface
	dce_opnum
	dce_stub_data
	ssl_version
	ssl_state
	Payload Detection Quick Reference

	Non-Payload Detection Rule Options
	fragoffset
	ttl
	tos
	id
	ipopts
	fragbits
	dsize
	flags
	flow
	flowbits
	seq
	ack
	window
	itype
	icode
	icmp_id
	icmp_seq
	rpc
	ip_proto
	sameip
	stream_size
	Non-Payload Detection Quick Reference

	Post-Detection Rule Options
	logto
	session
	resp
	react
	tag
	activates
	activated_by
	count
	replace
	detection_filter
	Post-Detection Quick Reference

	Rule Thresholds
	Writing Good Rules
	Content Matching
	Catch the Vulnerability, Not the Exploit
	Catch the Oddities of the Protocol in the Rule
	Optimizing Rules
	Testing Numerical Values

	Making Snort Faster
	MMAPed pcap

	Dynamic Modules
	Data Structures
	DynamicPluginMeta
	DynamicPreprocessorData
	DynamicEngineData
	SFSnortPacket
	Dynamic Rules

	Required Functions
	Preprocessors
	Detection Engine
	Rules

	Examples
	Preprocessor Example
	Rules

	Snort Development
	Submitting Patches
	Snort Data Flow
	Preprocessors
	Detection Plugins
	Output Plugins

	The Snort Team

