Ganeshell: browsing/debugging tool for
GANESHA NFS server

thomas.leiboviciQcea.fr

13th May 2008

Contents
1 Getting started 2
1.1 Compiling, installing and running 2
1.2 Start an interactive session oL 2
2 Using the shell 3
2.1 Layers e 3
2.1.1 Layersoverview 3
2.1.2 Setting current layero 3
2.1.3 Layer’sdebuglevel, 4
2.2 Variables 4
2.2.1 Getting, setting, deleting a variable. 4
2.2.2 Special variables oo 5
2.3 Expressions 6
2.3.1 Expression types 6
2.3.2 Handling expressions L. 7
2.4 Conditional execution 8
2.5 Timeroutines L 8
2.6 Batchexecution. 9
2.7 Multi-threaded batch execution 10
2.71 Commandline 10
2.7.2 Synchronization 10
2.7.3 About layers initialization L. 10
3 Accessing layers 10
31 FSAL e 10
3.1.1 Imitialization 10
3.1.2 Getting started 11
3.1.3 Pathsandhandles 11
3.1.4 Users managemento 11
3.2 Cache_inode 11
3.2.1 Inmitialization 12

3.2.2 Getting started oL Lo 12

3.2.3 Pathsandhandles 12
NES . . e e e e 12
3.3.1 Inmitialization, 12
3.3.2 Getting started Lo 13
3.33 Pathsandhandles 14
NFS remote 15
3.4.1 Initialization 15
342 Howtouseit 15

1 Getting started

1.1 Compiling, installing and running

Build the NFS-GANESHA distribution with the filesystem that you want.
E.g:

./configure --with-fsal=<filesystem_type>
make

In the "shell" directory, a program called <fsname>.ganeshell is built. You
can install it on your system by running "make install".

Then, you can simply run the shell without arguments (interactive mode),
or specify one or several script files to be executed (batch mode).

Synopsis:
<fsname>.ganeshell [-h][-v][-n <nb>] [Script_Filel [Script_File2]...]

-h: display short help
-v: verbose mode
-n <nb>: number of script instances (threads) to run

1.2 Start an interactive session

Run the shell with no arguments, then type "help" for displaying available
commands:

bash$./posix.ganeshell

ganeshell>help
Shell built-in commands:
barrier: synchronization in a multi-thread shell
echo: print one or more arguments
exit: exit this shell
help: print this help
if: conditionnal execution
interactive: close script file and start interactive mode
print: print one or more arguments
quit: exit this shell
set: set the value of a shell variable
time: measures the time for executing a command
unset: free a shell variable
varlist: print the list of shell variables

Shell tools commands:
chomp: removes final newline character
cmp: compares two expressions

diff: lists differences between two expressions

eq: test if two expressions are equal
meminfo: prints information about memory use

ne: test if two expressions are different

shell: executes a real shell command

sleep: suspends script execution for some time

timer: timer management command
wc: counts the number of char/words/lines in a string

Layers list:
FSAL: File system abstraction layer
Cache_inode: Cache inode layer
NFS: NFSv2, NFSv3, MNTvl, MNTv3 protocols (direct calls, not through RPCs)
NFS_remote: NFSv2, NFSv3, MNTvl, MNTv3 protocols (calls through RPCs)

2 Using the shell

2.1 Layers
2.1.1 Layers overview

The shell deals with GANESHA’’s layers independently. You must initialize each
layer that you want to use in the correct order (first the lowest layer, then the
upper ones), and you can issue some commands on each of these layers.
The list of available layers is displayed in the return of the "help" command.
Here is the list of server-side layers, from the lowest level to the highest:

e FSAL: the File System Abstraction Layer
e Cache inode: the metadata cache layer (FSAL layer must be initialized)

e NFS: the NFS protocol layer (FSAL and Cache inode layers must be
initialized)
You can also use ganeshell only as a NFS client, with the "NFS remote"
layer. This layer doesn’t need any other layer to be initialized.
2.1.2 Setting current layer

You can set the current layer by setting the LAYER shell variable.
E.g:

ganeshell> set LAYER FSAL

Then, "help" will display the list of commands available for this layer. To
obtains some help for a command, launch it with the "-h" option. E.g:

ganeshell> init_fs -h
usage: init_fs [options] <ganesha_config file>
options :

-h print this help

-v verbose mode

Each layer need to be initialized. Most of them provide an "init" call, that
takes a GANESHA configuration file as argument. E.g:

ganeshell> init_fs -v /etc/posix.ganesha.nfsd.conf

Filesystem initialization...

07/05/2008 13:27:39 : ganeshell-25462[shell] :Worker successfuly connected to database
Current directory is "/" (@A552000000000000CD03A7470000000002080000000000000200000000000000

2.1.3 Layer’s debug level

The special shell variable DEBUG_LEVEL is specific to each layer. Setting it will
impact the next calls to this layer (even if the layer is called by an upper layer).

In the following example, FSAL will be in FULL DEBUG mode, and Cache _inode
will be in EVENT level:

FSAL initialization

set LAYER FSAL

set DEBUG_LEVEL NIV_FULL_DEBUG
init_fs /etc/posix.ganesha.nfsd.conf

Metadata cache initialization

set LAYER Cache_inode

set DEBUG_LEVEL NIV_EVENT

init_cache /etc/ganesha/posix.ganesha.nfsd.conf

2.2 Variables

Ganeshell provides variables management, so you can create custom variables,
affect values to them and use their value afterward as argument of a command,
a condition, ... Variable values are stored as strings.

You can list all defined variables with the shell built-in command varlist.

2.2.1 Getting, setting, deleting a variable

e To get the value of a variable, place a $ sign before its name:

ganeshell> echo $LINE
42

e To set the value of a variable, execute:

set <var_name> <expressionl> [expression2]

Example:
ganeshell> set A 5

This will create the variable if it does not exist, else it will override its
previous value.

Expressions can be strings, other variables, command returns...

Note that set accepts several expressions that will be concatenated in the
target variable :

ganeshell> set MYVAR "A:" 1345 " L:" $LINE
ganeshell> echo $MYVAR
A:1345 L:28

e Finally, you can destroy a variable definition using unset:

ganeshell> unset MYVAR
ganeshell> echo $MYVAR
xx%%x%x% ERROR in <stdin> line 49: Undefined variable "MYVAR"

2.2.2 Special variables

Some special variables are defined and interpreted by shell:

e $7 and $STATUS: contain the status returned by the last operation

E.g:

ganeshell>toto

*xkkk*k*x ERROR in <stdin> line 3: toto: command not found
ganeshell>echo $7

-2

e $SHELLID: in a multi-instance (multi-thread) shell, this gives the index
for the current thread (first is 0);

e $PROMPT: you can modify the prompt string with this variable. This
may me useful when several threads are writing to shell standard output

E.g:
ganeshell> set PROMPT "thread#" $SHELLID ">"
thread#0>

e $INTERACTIVE: indicates whether the shell is in interactive or batch
mode ;

e $INPUT: indicates the current input file for the shell (<stdin> is returned
in interactive mode). Setting the value of this variable will result in exe-
cuting the given file as a ganeshell script

E.g:
ganeshell> set INPUT /tmp/my_script.gsh

e $LINE: returns the current line number in script or standard output;
e $DEBUG_LEVEL or $DBG_ LVL: debug level of the current layer;

¢ $VERBOSE: setting this variable will enable/disable shell verbose. This
mode is similar to "set -o xtrace" in common UNIX shells: each exe-
cuted command and its returned status are displayed on standard error
output. This does not affect layer’s trace level.

2.3 Expressions
2.3.1 Expression types

Several expression types can be used for affecting a value to a variable, or as a
command argument:

e any unquoted sequence of characters, with no blank (space or tab)

Example:

ganeshell> set A 1
ganeshell> echo $A

1

ganeshell> set X 2.345
ganeshell> echo $X
2.345

e single or double quoted strings

Examples:

ganeshell> set D "This is a double-quoted string"
ganeshell> echo $D

This is a double-quoted string

ganeshell> set S ’This is a single-quoted string’
ganeshell> echo $S
This is a single-quoted string

e variable value: a $ sign followed by a variable name

Example:

ganeshell> set B $A
ganeshell> echo $B
1

e command return: a backquoted string

Example:

ganeshell> set DATE "current time is: " ‘shell datef
ganeshell> echo $DATE

current time is: Wed May 7 14:55:49 CEST 2008

Note that you can escape a character in an expression, using a backslash:

ganeshell> set E "There are some \"escaped\" caracters here !"
ganeshell> echo $E
There are some "escaped" caracters here !

Variable references ($<varname>) are not interpreted when they are used in
a single or double-quoted string.

ganeshell> set STR "The value of A is $A"
ganeshell> echo $STR
The value of A is $A

If you want to display the value of A, reference it outside the string:

ganeshell> set STR "The value of A is " $A
ganeshell> echo $STR
The value of A is 1

In a back-quoted string, they are however interpreted at command execution
time.

2.3.2 Handling expressions
Several built-in commands can be used for handling expressions:

e chomp: remove newline chars at the end of an expression. It is useful for
cleaning expressions returned by an external command:

ganeshell> set RET ‘shell date®
ganeshell>echo "returned:[" $RET "]"
returned: [Wed May 7 14:55:49 CEST 2008
]

ganeshell> set RET ‘chomp $RET¢
ganeshell>echo "returned:[" $RET "]"
returned: [Wed May 7 14:55:49 CEST 2008]

e wc: count the number of characters and lines of an expression
e diff: compare two expressions

e eq: test if two expressions are the same (status is 0 if different, 1 if equal,
-1 on error)

ganeshell> eq "ABCD" "ABCD"
ganeshell> echo $7

1

ganeshell> eq "ABCD" "abcd"
ganeshell> echo $7

0

case insensitive string compare
ganeshell> eq -i "ABCD" "abcd"
ganeshell> echo $7

1

numerical compare
ganeshell> eq -n 000001 1
ganeshell> echo $7

1

e ne: test if two expressions are different (status is 1 if different, 0 if equal,
-1 on error)

2.4 Conditional execution

ganeshell provides a very basic structure for conditional execution.
It’s syntax is:

if command0 ? commandl [: command2]

commandO is first executed. If its return code is not null, then commandi is
executed, else command?2 (optional) is launched.
Basically, command0 can be a test command like eq or ne.

Example:
ganeshell> cd ..
ganeshell> if ne -n $STATUS O ? print "cd command ERROR" : print "cd command OK"

2.5 Time routines

Tts often useful to benchmark filesystem performances. So the shell provides
calls for measuring command execution time:

e time <command>: measures and display the time for executing a com-
mand.

Example:
ganeshell> time init_fs /root/posix.ganesha.nfsd.conf
Execution time for command "init_fs": 0.027679 s

e timer start|stopl|print: this timer makes it possible to measure the
time since it was started.

Example:

ganeshell> timer start
ganeshell> cd /tmp
ganeshell> 1s
ganeshell> timer print
0.804578 s

ganeshell> cd ..
ganeshell> 1s
ganeshell> timer stop
ganeshell> timer print
1.423081 s

e sleep <seconds>: suspends shell execution for a given amount of seconds

2.6 Batch execution

For executing a ganeshell script file, simply give it as argument to the <fsname>.ganeshell
command.

bash$./posix.ganeshell /tmp/myscript.gsh

You can also execute a script from the interactive mode, by setting the INPUT
variable.

ganeshell> set INPUT /tmp/myscript.gsh

The script is then executed in batch mode. By default, the ganeshell proces-
sus terminates when the script is finished. You can however avoid this by using
the ’interactive’ command: writting this command at the end of your script
will result in giving back control to interactive mode, so you can execute other
commands after the script run.

This can also been used for writting initialization scripts with repetitive
"boot straps" operations. Here is an exemple of such a script:

set CONFIG_FILE /etc/ganesha/posix.ganesha.nfsd.conf
set LAYER FSAL

init_fs $CONFIG_FILE

set LAYER Cache_inode

init_cache $CONFIG_FILE

set LAYER NFS

nfs_init $CONFIG_FILE

mount /export

interactive

10

2.7 Multi-threaded batch execution
2.7.1 Command line

For starting ganeshell with multiple threads, you can launch it with as many
scripts as threads wanted:

bash$./posix.ganeshell script-thrl.gsh script-other.gsh script-other.gsh

You can also launch multiple instances of the same script, using the -n
option:

bash$./posix.ganeshell -n 4 script.gsh

2.7.2 Synchronization

The shell provides a unique synchronization call: barrier. When calling barrier,
the thread is suspended until all other threads joined the barrier.

Note that shell variables are NOT shared between threads. They are local
to each thread.

2.7.3 About layers initialization

Each layer must only be initialized once for all threads. Thus, it recommanded
that the first script does all layers initialization and calls barrier afterward, so
the other threads will start working only when everything is initialized properly.

3 Accessing layers

Ganeshell provides an access to main GANESHA layers, from Filesystem to
NFS. Each shell interface implements native filesystem calls (like access, se-
tattr, open, read, write,...) but also higher level features like current directory
management (cd, pwd), user management (su) and some classical unix shell
commands (cat).

This section gives you a short help for using each of these layers.

3.1 FSAL

This layer provides an access to the File System Abstraction Layer of GANESHA
(FSAL), so you can make operations directly on the filesystem, without any
cache effect due to the Cache inode layer.

3.1.1 Initialization

For using the FSAL layer, first set the LAYER variable of the shell:
ganeshell> set LAYER FSAL
Then initialize the layer using a Ganesha configuration file:

ganeshell> init_fs /etc/posix.ganesha.nfsd.conf

11

3.1.2 Getting started

Once initialized, you can use most common shell commands like cd, 1s, pwd,
stat, mkdir,...

Type help to get FSAL command list.

To get help about a command, type <command> -h.

3.1.3 Paths and handles

FSAL layer of ganeshell makes it possible to address entries using their full or
relative path. However, you can also address them using their FSAL handle
(hexadecimal representation preceded with a '@’ sign):

ganeshell> cd /
Current directory is "/" (@A552000000000000CD03A747FFFFFFFF02080000000000000200000000000000

is equivalent to:
ganeshell> cd @A552000000000000CD03A747FFFFFFFF020800000000000002000000000000001B0000003000

The '1s’ command has a special option ’-S’ for displaying objects handle.

3.1.4 Users management

If Ganeshell is launched with sufficient permissions for accessing the filesystem

or the required credentials, you can take the identity of any user with the ’su’

command. This can be very useful for testing access rights of your filesystem.
You can give to ’su’ a uid or a user name:

ganeshell>su root

Changing user to : root (uid = 0, gid = 0)
altgroups = 1, 2, 3, 4, 6, 10

Done.

is equivalent to:

ganeshell>su 0

Changing user to : root (uid = 0, gid
altgroups = 1, 2, 3, 4, 6, 10

Done.

0)

3.2 Cache inode

This layer provides an access to the Cache inode layer of GANESHA, so you
can interact directly with it, without going through network or NFS Protocol
service routines.

12

3.2.1 Initialization

You must have initialized the FSAL layer before using the Cache inode layer.
To do this, report to the previous section (FSAL).
Then, set the LAYER variable of the shell:

ganeshell> set LAYER Cache_inode
After that, initialize the layer using a Ganesha configuration file:

ganeshell> init_cache /etc/ganesha/posix.ganesha.nfsd.conf

3.2.2 Getting started

Once initialized, you can use most common shell commands like cd, 1s, pwd,
stat, mkdir,... You can also make actions on data and metadata caches, like
data_cache, flush_cache, garbagge collection, ...

Type help to get Cache inode command list.

To get help about a command, type <command> -h.

3.2.3 Paths and handles

Like in the FSAL layer, filesystem entries can be addressed using their path or
their FSAL handle beginning with ’@’.

For displaying FSAL handles with 1s, use the '-H’ option. You can also
display their addresses in metadata cache with the ’-L’ option.
3.3 NFS
This layer provides an access to the NFS layer of GANESHA, so you can execute
NFS queries directly on the server, as if they were sent by a client.
3.3.1 Initialization

You must have initialized the FSAL and the Cache inode layers before using the
NFS layer. To do this, report to the previous sections (FSAL and Cache _inode).
Then, set the LAYER variable of the shell:

ganeshell> set LAYER NFS
After that, initialize the layer using a Ganesha configuration file:

ganeshell> nfs_init /etc/posix.ganesha.nfsd.conf

13

3.3.2 Getting started
This layer provides two ways of accessing the filesystem with NFS:

e You can use native NFS v2 and v3 calls (and mount protocol v1 and v3).
In this mode, you need to be aware of manipulating NFS handles and
structures ;-)

ganeshell>mnt3_export
{
ex_dir = /tmp
ex_groups =
gr_name = 127.0.0.1
}
ganeshell>mnt3_mount /tmp
mountres3 =
{
fhs_status = 0
mountinfo =
{
fhandle3 = @A10000000000000000000000000000004F00A752000000000000CD0O3A7470000000000(
auth_flavor = 1
}
}
ganeshell>nfs3_getattr @A10000000000000000000000000000004F00A752000000000000CD03A74700(
GETATTR3res =
{
status
fattr3
{

0 (NFS3_0K)

type = 2 (NF3DIR)
mode = 01777
nlink 9

uid =
gid =
size = 4096
used = 8192
rdev = 0.0
fsid = Oxcil

fileid = 0x2

atime 1210322525.000000000 (2008-05-09 10:42:05)
1210326484.000000000 (2008-05-09 11:48:04)
1210326484.000000000 (2008-05-09 11:48:04)

0
0

mtime

ctime
}
}

e You can also use simple shell commands (cd, 1s, ...) wrapping MNT3/NFS3

14

protocol calls. All you have to do before is to make an inital "mount
<path>", for beeing able to access an export. The export is then mounted
as H/H‘

Note: you can get the list of exports using "mnt3_export".

ganeshell>mnt3_export
{
ex_dir = /tmp
ex_groups =
gr_name = 127.0.0.1
}
ganeshell>mount /tmp
Current directory is "/"

Current File handle is "@A10000000000000000000000000000004F00A752000000000000CD03A7470(

ganeshell>ls -1

2 drwxrwxrwx 9 0 0 4096
2 drwxrwxrwx 9 0 0 4096
17 -rw------- 1 3733 5683 523
23 prw------- 1 3051 5683 0
56ab41 dr-xr-xr-x 2 0 0 4096
14 -rw-r--r-- 1 0 0 15176
13 STWXrwxrwx 1 2931 2931 0
d -rw---—---- 1 3733 5683 523
f -ruxr-x--- 1 3733 5683 10165193
11 -rw-r--r-- 1 0 0 0
6170al drwxr-x--- 3 0 0 4096
C -rWw-—------ 1 3733 5683 523
10 -rw-r--r-- 1 0 0 10
15 -rw-r--r-- 1 0 0 33531
12 -ry--—----—- 1 2931 2931 26
b drwx------ 2 0 0 16384
16 -rwxr-x--- 1 3733 5683 6967242
18 -rw-r--r-- 1 0 0 148
2b95c1 drwxrwxrwx 2 0 0 4096
28141 drwxrwxrwx 2 0 0 4096

3.3.3 Paths and handles

Of course, if you are using native NFSv2/v3 calls, you will need to address
entries using their NFS handle. You also need to solve the path by yourself
using LOOKUP call.

If your are using shell wrappers, you can address entries with their full
path or with a path relative to the current directory (managed by shell).
You can also address entries using their NFSv3 handle, beginning with ’@’.

15

May
May
May
Apr
Oct
May
May
May
May
Apr
May
May
May
May
May
Oct
May
Apr
Apr
Apr

w
DO WO ©WWOO

23

12:
12:
11:
11:

04 .

04
12
15

2007

13:
12:
10:
11:
11:
10:
09:
12:
15:
12:

07
01
58
57
16
38
52
05
09
01

2007

13:
13:
11:
11:

27
59
15
14

krbbcc_373:
gitapply.aZ
RPMS
ganesha.ste
.s.PGSQL. 54
krbbcc_373s
posix.ganes
casimir.cmc
ganesha.dat
krbbcc_373¢
invocateur.
casimir.cmc
.s.PGSQL. 54
lost+found
posix.ganes
casimir.cmc
.font-unix
.ICE-unix

ganeshell> cd /
Current directory is "/"
Current File handle is "Q@A10000000000000000000000000000004F00A752000000000000CD03A7470(

is equivalent to:
ganeshell> cd @A10000000000000000000000000000004F00A752000000000000CD03A74700000000000¢

For displaying NFS handles with 1s, use the ’-H’ option.

3.4 NFS remote

This layer makes it possible to use ganeshell as a NFS client.

3.4.1 Initialization

You don’t need to initialize any other layer for using the NFS remote layer.
First, set the LAYER, variable of the shell:

ganeshell> set LAYER NFS_remote

After that, initialize the RPC connections to the remote NFS server for every
protocol you need, by providing host name, protocol version and a port number
(optional):

initialize client for mount3 protocol
ganeshell> rpc_init localhost mount3 udp 2049

initialize client for nfs3 protocol
ganeshell> rpc_init localhost nfs3 udp 2049

3.4.2 How to use it

You can now use the same functions as the NFS layer described in the previous
section (both NFS native calls and high-level wrappers).

ganeshell>mount /tmp

Current directory is "/"

Current File handle is "@A10000000000000000000000000000004F00A752000000000000CD03A747000000
ganeshell>cd RPMS

Current directory is "/RPMS"

Current File handle is "@A20000000000000000000000000000004F001253000000000000C767CE47000000
ganeshell>ls

topspin-ib-mod-rhel4-2.6.9-22.ELsmp-3.0.0-185.b.6.1.Bull.x86_64.rpm
mpich-1.2.7-p1.x86_64.rpm
RaidMan-8.25.x86_64.rpm

16

