~ mybatis
v. 3.5.10
User Guide

MyBatis.org 2022-05-24

Table of Contents

|
Table of Contents

Table Of CONtENtS e e e i
INtrOdUCHION .. 1
Getting Started 2
Configuration XML 8
Mapper XML Files 31
DYyNamiC SQL ... 63
Java APl . 70
Statement Builders ... 92
LOggINg oo 100

©2022, MyBatis.org « ALL RIGHTS RESERVED.

Table of Contents

©2022,

MyBatis.org

ALL RIGHTS RESERVED.

1 Introduction 1

Introduction

1.1 Introduction

1.1.1 What is MyBatis?

MyBatisis afirst class persistence framework with support for custom SQL., stored procedures
and advanced mappings. MyBatis eliminates ailmost all of the JDBC code and manual setting of
parameters and retrieval of results. MyBatis can use simple XML or Annotations for configuration
and map primitives, Map interfaces and Java POJOs (Plain Old Java Objects) to database records.

1.1.2 Help make this documentation better-...

If you find this documentation lacking in any way, or missing documentation for afeature, then the
best thing to do is learn about it and then write the documentation yourself!

Sources of thismanual are available in xdoc format at project's Git Fork the repository, update them
and send a pull request.

Y ou're the best author of this documentation, people like you have to read it!

1.1.3 Translations

Users can read about MyBatis in following trangd ations:

» English

* Espaiiol

o fHH

o

o HHHHE
Do you want to read about MyBatis in your own native language? File an issue providing patches
with your mother tongue documentation!

©2022, MyBatis.org « ALL RIGHTS RESERVED.

https://github.com/mybatis/mybatis-3/tree/master/src/site

2 Getting Started 2

Getting Started

2.1 Getting started

2.1.1 Installation
To use MyBatis you just need to include the mybatis-x.x.x.jar filein the classpath.
If you are using Maven just add the following dependency to your pom.xm:

<dependency>
<gr oupl d>or g. nybat i s</ gr oupl d>
<artifactld>nybatis</artifactld>
<ver si on>x. X. x</ ver si on>

</ dependency>

2.1.2 Building SqlSessionFactory from XML

Every MyBatis application centers around an instance of Sgl SessionFactory. A Sql SessionFactory
instance can be acquired by using the Sql SessionFactoryBuilder. Sql SessionFactoryBuilder can build
a Sql SessionFactory instance from an XML configuration file, or from a custom prepared instance of
the Configuration class.

Building a Sql SessionFactory instance from an XML fileisvery simple. It is recommended that you
use a classpath resource for this configuration, but you could use any |nputStream instance, including
one created from aliteral file path or afile:// URL. MyBatisincludes a utility class, called Resources,
that contains a number of methods that make it ssimpler to load resources from the classpath and other
locations.

String resource = "org/ nybatis/exanpl e/ nybatis-config.xm";
| nput St ream i nput Stream = Resour ces. get Resour ceAsSt r ean(r esour ce) ;
Sql Sessi onFactory sql Sessi onFactory =

new Sql Sessi onFact oryBui | der (). bui I d(i nput Strean)

The configuration XML file contains settings for the core of the MyBatis system, including a
DataSource for acquiring database Connection instances, as well as a TransactionManager for
determining how transactions should be scoped and controlled. The full details of the XML
configuration file can be found later in this document, but here is a ssimple example:

©2022, MyBatis.org « ALL RIGHTS RESERVED.

https://github.com/mybatis/mybatis-3/releases

2 Getting Started 3

<?xm version="1.0" encodi ng="UTF-8" 7>
<I DOCTYPE confi guration
PUBLIC "-//nybatis.org//DID Config 3.0//EN
"http://nybatis.org/dtd/ nybatis-3-config.dtd">
<confi guration>
<envi ronments defaul t ="devel opnent ">
<envi ronnent id="devel opnent">
<transacti onManager type="JDBC'/>
<dat aSour ce type="POOLED" >
<property name="driver" value="${driver}"/>
<property name="url" val ue="${url}"/>
<property name="usernane" val ue="${usernane}"/>
<property name="password" val ue="${password}"/>
</ dat aSour ce>
</ envi ronnment >
</ envi ronment s>
<mapper s>
<mapper resource="org/ nybatis/exanpl e/ Bl ogMapper.xm "/>
</ mapper s>
</ configuration>

While thereisalot more to the XML configuration file, the above example points out the most critical
parts. Notice the XML header, required to validate the XML document. The body of the environment
element contains the environment configuration for transaction management and connection pooling.
The mappers element contains alist of mappers —the XML files and/or annotated Java interface
classes that contain the SQL code and mapping definitions.

2.1.3 Building SqlSessionFactory without XML

If you prefer to directly build the configuration from Java, rather than XML, or create your own
configuration builder, MyBatis provides a complete Configuration class that provides all of the same
configuration options as the XML file.

Dat aSour ce dat aSource = Bl ogDat aSour ceFact ory. get Bl ogDat aSour ce() ;
Transacti onFactory transactionFactory =

new JdbcTransacti onFactory();
Envi ronment environnment =

new Environnent ("devel opnent", transactionFactory, dataSource);
Configuration configuration = new Configuration(environment);
confi guration. addvapper (Bl ogMapper. cl ass) ;
Sql Sessi onFactory sql Sessi onFactory =

new Sql Sessi onFact oryBui | der (). buil d(confi guration);

Notice in this case the configuration is adding a mapper class. Mapper classes are Java classes that
contain SQL Mapping Annotations that avoid the need for XML mapping. However, due to some
limitations of Java Annotations and the complexity of some MyBatis mappings, XML mapping is still
required for the most advanced mappings (e.g. Nested Join Mapping). For this reason, MyBatis will
automatically look for and load a peer XML fileif it exists (in this case, BlogMapper.xml would be
loaded based on the classpath and name of BlogMapper.class). More on this later.

©2022, MyBatis.org « ALL RIGHTS RESERVED.

2 Getting Started 4

2.1.4 Acquiring a SqlSession from SqlSessionFactory

Now that you have a Sgl SessionFactory, as the name suggests, you can acquire an instance of

Sgl Session. The SglSession contains absolutely every method needed to execute SQL commands
against the database. Y ou can execute mapped SQL statements directly against the SglSession
instance. For example:

try (Sql Session session = sql Sessi onFact ory. openSession()) {
Bl og bl og = session. sel ect One(
"org. mybatis. exanpl e. Bl ogvapper . sel ect Bl og", 101);

}

While this approach works, and is familiar to users of previous versions of MyBadtis, thereis now a
cleaner approach. Using an interface (e.g. BlogM apper.class) that properly describes the parameter
and return value for a given statement, you can now execute cleaner and more type safe code, without
error prone string literals and casting.

For example:

try (Sql Session session = sql Sessi onFactory. openSession()) {
Bl ogMapper mapper = session. get Mapper (Bl ogMapper. cl ass);
Bl og bl og = mapper. sel ect Bl og(101);

}

Now let's explore what exactly is being executed here.

2.1.5 Exploring Mapped SQL Statements

At this point you may be wondering what exactly is being executed by the SglSession or Mapper
class. Thetopic of Mapped SQL Statementsis abig one, and that topic will likely dominate the
majority of this documentation. But to give you an idea of what exactly is being run, here are a couple
of examples.

In either of the examples above, the statements could have been defined by either XML or
Annotations. Let'stake alook at XML first. The full set of features provided by MyBatis can be
realized by using the XML based mapping language that has made MyBatis popular over the years.

If you've used MyBatis before, the concept will be familiar to you, but there have been numerous
improvements to the XML mapping documents that will become clear later. Here is an example of an
XML based mapped statement that would satisfy the above SglSession calls.

<?xm version="1.0" encodi ng="UTF-8" ?>
<! DOCTYPE mapper
PUBLIC "-//nybatis.org//DID Mapper 3.0//EN'
"http://nybatis.org/dtd/ nybatis-3-nmapper.dtd">
<mapper nanespace="org. nybatis. exanpl e. Bl ogVapper " >
<sel ect id="sel ectBl og" resultType="Bl og">
select * fromBlog where id = #{id}
</ sel ect >
</ mapper >

While thislookslike alot of overhead for this simple example, it isactually very light. You
can define as many mapped statements in a single mapper XML file asyou like, so you get
alot of mileage out of the XML header and doctype declaration. The rest of thefileis pretty
self explanatory. It defines a name for the mapped statement “ selectBlog”, in the namespace
“org.mybatis.example.BlogMapper”, which would allow you to call it by specifying the fully

©2022, MyBatis.org « ALL RIGHTS RESERVED.

2 Getting Started 5

qualified name of “org.mybatis.example.BlogMapper.selectBlog”, as we did above in the following
example:

Bl og bl og = session. sel ect One(
"org. mybatis. exanpl e. Bl ogMapper . sel ect Bl og", 101);

Notice how similar thisisto calling a method on afully qualified Java class, and there's areason for
that. This name can be directly mapped to a Mapper class of the same name as the namespace, with a
method that matches the name, parameter, and return type as the mapped select statement. This allows
you to very simply call the method against the Mapper interface as you saw above, but here it isagain
in the following example:

Bl ogMapper nmapper = session. get Mapper (Bl oghapper. cl ass);
Bl og bl og = mapper. sel ect Bl og(101);

The second approach has alot of advantages. First, it doesn't depend on a string literal, so it's much
safer. Second, if your IDE has code completion, you can leverage that when navigating your mapped
SQL statements.

NOTE A note about namespaces.

Namespaces were optional in previous versions of MyBatis, which was confusing and unhel pful.
Namespaces are now required and have a purpose beyond simply isolating statements with longer,
fully-qualified names.

Namespaces enabl e the interface bindings as you see here, and even if you don’t think you'll use
them today, you should follow these practices laid out here in case you change your mind. Using
the namespace once, and putting it in a proper Java package namespace will clean up your code and
improve the usability of MyBatisin the long term.

Name Resolution: To reduce the amount of typing, MyBatis uses the following name resolution rules
for al named configuration elements, including statements, result maps, caches, etc.

* Fully qualified names (e.g. “com.mypackage.MyMapper.selectAllThings’) are looked up
directly and used if found.

 Short names (e.g. “selectAllIThings’) can be used to reference any unambiguous entry. However
if there are two or more (e.g. “com.foo.selectAll Things and com.bar.selectAllThings’), then
you will receive an error reporting that the short name is ambiguous and therefore must be fully
qualified.

There's one more trick to Mapper classes like BlogMapper. Their mapped statements don't need to be
mapped with XML at al. Instead they can use Java Annotations. For example, the XML above could
be eliminated and replaced with:

package org. nybatis. exanpl e;

public interface Bl ogMapper {
@pel ect ("SELECT * FROM bl og WHERE id = #{id}")
Bl og sel ectBlog(int id);

}

The annotations are alot cleaner for simple statements, however, Java Annotations are both limited
and messier for more complicated statements. Therefore, if you have to do anything complicated,
you're better off with XML mapped statements.

©2022, MyBatis.org « ALL RIGHTS RESERVED.

2 Getting Started 6

It will be up to you and your project team to determine which isright for you, and how important it is
to you that your mapped statements be defined in a consistent way. That said, you're never locked into
asingle approach. You can very easily migrate Annotation based Mapped Statementsto XML and
vice versa.

2.1.6 Scope and Lifecycle

It's very important to understand the various scopes and lifecycles classes we've discussed so far.
Using them incorrectly can cause severe concurrency problems.

NOTE Object lifecycle and Dependency Injection Frameworks

Dependency I njection frameworks can create thread safe, transactiona Sgl Sessions and mappers and
inject them directly into your beans so you can just forget about their lifecycle. Y ou may want to have
alook at MyBatis-Spring or MyBatis-Guice sub-projects to know more about using MyBatis with DI
frameworks.

2.1.6.1 SqglSessionFactoryBuilder

This class can be instantiated, used and thrown away. Thereis no need to keep it around once you've
created your SglSessionFactory. Therefore the best scope for instances of Sql SessionFactoryBuilder
is method scope (i.e. alocal method variable). Y ou can reuse the Sql SessionFactoryBuilder to build
multiple Sgl SessionFactory instances, but it's still best not to keep it around to ensure that all of the
XML parsing resources are freed up for more important things.

2.1.6.2 SqglSessionFactory

Once created, the Sl SessionFactory should exist for the duration of your application execution. There
should be little or no reason to ever dispose of it or recreate it. It's a best practice to not rebuild the

Sql SessionFactory multiple times in an application run. Doing so should be considered a*“bad smell”.
Therefore the best scope of SglSessionFactory is application scope. This can be achieved a number of
ways. The simplest is to use a Singleton pattern or Static Singleton pattern.

2.1.6.3 SqglSession

Each thread should have its own instance of SglSession. Instances of SglSession are not to be shared
and are not thread safe. Therefore the best scopeis request or method scope. Never keep references
to a SglSession instance in a static field or even an instance field of aclass. Never keep references to
a SglSession in any sort of managed scope, such as HttpSession of the Servlet framework. If you're
using aweb framework of any sort, consider the Sgl Session to follow a similar scope to that of an
HTTP request. In other words, upon receiving an HT TP request, you can open a SqlSession, then
upon returning the response, you can closeit. Closing the session is very important. Y ou should
always ensure that it's closed within afinally block. The following is the standard pattern for ensuring
that Sgl Sessions are closed:

try (Sql Session session = sql Sessi onFactory. openSession()) {
/1 do work
}

Using this pattern consistently throughout your code will ensure that all database resources are
properly closed.

©2022, MyBatis.org « ALL RIGHTS RESERVED.

2 Getting Started 7

2.1.6.4 Mapper Instances

Mappers are interfaces that you create to bind to your mapped statements. Instances of the mapper
interfaces are acquired from the Sgl Session. As such, technically the broadest scope of any mapper
instance is the same as the Sgl Session from which they were requested. However, the best scope for
mapper instances is method scope. That is, they should be requested within the method that they are
used, and then be discarded. They do not need to be closed explicitly. While it's not a problem to keep
them around throughout a request, similar to the Sgl Session, you might find that managing too many
resources at thislevel will quickly get out of hand. Keep it ssimple, keep Mappers in the method scope.
The following example demonstrates this practice.

try (Sql Sessi on session = sql Sessi onFactory. openSession()) {
Bl ogMapper napper = session. get Mapper (Bl oghapper. cl ass);
/1 do work

}

©2022, MyBatis.org « ALL RIGHTS RESERVED.

3 Configuration XML 8

3 Configuration XML

3.1 Configuration

The MyBatis configuration contains settings and properties that have a dramatic effect on how
MyBatis behaves. The high level structure of the document is as follows:

 configuration

e properties
 settings

* typeAliases
 typeHandlers
 oObjectFactory
* plugins

e environments

e environment

* transactionManager
 dataSource
databasel dProvider
* mappers

3.1.1 properties

These are externalizable, substitutable properties that can be configured in atypical Java Properties
fileinstance, or passed in through sub-elements of the properties element. For example:

<properties resource="org/ nmybati s/ exanpl e/ config. properties">
<property nane="usernane" val ue="dev_user"/>
<property nane="password" val ue="F2Fa3! 33TYyg"/>

</ properties>

The properties can then be used throughout the configuration files to substitute values that need to be
dynamically configured. For example:

<dat aSour ce type="POOLED" >
<property name="driver" value="${driver}"/>
<property name="url" val ue="${url}"/>
<property name="usernane" val ue="${usernane}"/>
<property name="password" val ue="${password}"/>
</ dat aSour ce>

The username and password in this example will be replaced by the values set in the properties
elements. The driver and url properties would be replaced with values contained from the
config.propertiesfile. This provides alot of options for configuration.

Properties can also be passed into the Sgl SessionFactoryBuilder.build() methods. For example:

©2022, MyBatis.org « ALL RIGHTS RESERVED.

3 Configuration XML

Sql Sessi onFactory factory =
sql Sessi onFact or yBui | der. bui | d(r eader, props);

/1l ... or

Sql Sessi onFactory factory =

new Sql Sessi onFact or yBui | der. bui | d(reader, environment, props);

If aproperty existsin more than one of these places, MyBatis |oads them in the following order:

 Properties specified in the body of the properties element are read first,

» Propertiesloaded from the classpath resource or url attributes of the properties element are read

second, and override any duplicate properties already specified,

 Properties passed as a method parameter are read last, and override any duplicate properties that

may have been loaded from the properties body and the resource/url attributes.

Thus, the highest priority properties are those passed in as a method parameter, followed by resource/

url attributes and finally the properties specified in the body of the properties element.
Since the MyBatis 3.4.2, your can specify a default value into placeholder as follow:

<dat aSour ce type="POOLED" >

<l-- ... -->

<property name="user nane" val ue="${usernane: ut_user}"/> <!--
</ dat aSour ce>

| f

'luser name' proper

Thisfeatureis disabled by default. If you specify a default value into placeholder, you should enable

this feature by adding a special property as follow:

<properties resource="org/ nybatis/exanpl e/ config. properties">
<l-- ... -->

</ properties>

<property nane="org. apache. i batis. parsing. PropertyParser. enabl e-

lef aul t - val ue" va

NOTE Thiswill conflict withthe" : " character in property keys (e.g. db: user nane) or the

ternary operator of OGNL expressions (e.g. ${t abl eName != nul| ? tabl eNane :

' gl obal _constants'})onaSQL definition. If you use either and want default property values,

you must change the default value separator by adding this special property:

<properties resource="org/ nybatis/exanpl e/ config. properties">
<l-- ... -->

</ properties>

<property nane="org. apache. i batis. parsing. PropertyParser. default{val ue-separator"

<dat aSour ce type="POOLED'>

<l-- ... -->

<property nanme="usernane" val ue="${db: user name?: ut _user}"/>
</ dat aSour ce>

©2022, MyBatis.org « ALL RIGHTS RESERVED.

3 Configuration XML

3.1.2 settings

These are extremely important tweaks that modify the way that MyBatis behaves at runtime. The
following table describes the settings, their meanings and their default values.

cacheEnabled

lazyLoadingEnabled

aggressivelLazylLoading

multipleResultSetsEnabled

useColumnLabel

useGeneratedKeys

Globally enables or
disables any caches
configured in any mapper
under this configuration.

true | false

Globally enables or
disables lazy loading.
When enabled, all
relations will be lazily
loaded. This value can be
superseded for a specific
relation by using the

f et chType attribute on
it.

true | false

When enabled, any

method call will load all

the lazy properties of

the object. Otherwise,

each property is loaded

on demand (see also

| azyLoadTri gger Met |

true | false

Allows or disallows
multiple ResultSets to be
returned from a single
statement (compatible
driver required).

true | false

Uses the column label
instead of the column
name. Different drivers
behave differently in this
respect. Refer to the
driver documentation, or
test out both modes to
determine how your driver
behaves.

true | false

Allows JDBC support

for generated keys. A
compatible driver is
required. This setting
forces generated keys

to be used if set to true,
as some drivers deny
compatibility but still work
(e.g. Derby).

true | false

©2022, MyBatis.org « ALL RIGHTS RESERVED.

true

false

false (true in <3.4.1)

true

true

False

10

3 Configuration XML

autoMappingBehavior

Specifies if and

how MyBatis should
automatically map
columns to fields/
properties. NONE
disables auto-mapping.
PARTIAL will only auto-
map results with no
nested result mappings
defined inside. FULL will
auto-map result mappings
of any complexity
(containing nested or
otherwise).

autoMappingUnknownColur Specify the behavior

defaultExecutorType

defaultStatementTimeout

defaultFetchSize

defaultResultSetType

©2022, MyBatis.org =

when detects an

unknown column (or
unknown property type) of
automatic mapping target.

« NONE: Do nothing

+ WARNI NG Output
warning log
(The log level of
' or g. apache. i bat
must be set to WARN)

« FAI LI NG Fail
mapping (Throw
Sql Sessi onExcept

Configures the default
executor. SIMPLE
executor does nothing
special. REUSE executor
reuses prepared
statements. BATCH
executor reuses
statements and batches
updates.

Sets the number of
seconds the driver will
wait for a response from
the database.

Sets the driver a hint as
to control fetching size
for return results. This
parameter value can
be override by a query
setting.

Specifies a scroll
strategy when omit it
per statement settings.
(Since: 3.5.2)

ALL RIGHTS RESERVED.

NONE, PARTIAL, FULL

NONE, WARNING,
FAILING

SIMPLE REUSE BATCH

Any positive integer

Any positive integer

FORWARD_ONLY |
SCROLL_SENSITIVE |
SCROLL_INSENSITIVE |
DEFAULT(same behavior
with 'Not Set')

PARTIAL

NONE

SIMPLE

Not Set (null)

Not Set (null)

Not Set (null)

11

havi or'

3 Configuration XML

safeRowBoundsEnabled

safeResultHandlerEnabled

mapUnderscoreToCamelCe

localCacheScope

jdbcTypeForNull

lazyLoadTriggerMethods

defaultScriptingLanguage

defaultEnumTypeHandler

©2022, MyBatis.org =

Allows using RowBounds
on nested statements. If
allow, set the false.

Allows using
ResultHandler on nested
statements. If allow, set
the false.

Enables automatic
mapping from classic
database column names
A_COLUMN to camel
case classic Java

property names aColumn.

MyBatis uses local
cache to prevent circular
references and speed up
repeated nested queries.
By default (SESSION) all
queries executed during
a session are cached. If

localCacheScope=STATEN

local session will be
used just for statement
execution, no data will
be shared between two

different calls to the same

SqlSession.

Specifies the JDBC

type for null values

when no specific JDBC
type was provided for

the parameter. Some
drivers require specifying
the column JDBC type
but others work with
generic values like NULL,
VARCHAR or OTHER.

Specifies which Object's
methods trigger a lazy
load

Specifies the language
used by default for
dynamic SQL generation.

Specifies the
TypeHand! er used by
default for Enum. (Since:
3.4.5)

ALL RIGHTS RESERVED.

true | false

true | false

true | false

SESSION | STATEMENT

JdbcType enumeration.
Most common are: NULL,
VARCHAR and OTHER

A method name list
separated by commas

A type alias or fully
qualified class name.

A type alias or fully
qualified class name.

12

False

True

False

SESSION

OTHER

equals,clone,hashCode,toString

org.apache.ibatis.scripting.xmltags.XMLLangL

org.apache.ibatis.type.EnumTypeHandler

3 Configuration XML

callSettersOnNulls

Specifies if setters

or map's put method

will be called when a
retrieved value is null.

It is useful when you
rely on Map.keySet() or
null value initialization.
Note primitives such as
(int,boolean,etc.) will not
be set to null.

returninstanceForEmptyRo\v MyBatis, by default,

logPrefix

logimpl

proxyFactory

visimpl

useActualParamName

©2022, MyBatis.org =

returns nul | when

all the columns of a
returned row are NULL.
When this setting is
enabled, MyBatis returns
an empty instance
instead. Note that it is
also applied to nested
results (i.e. collectioin and
association). Since: 3.4.2

Specifies the prefix string
that MyBatis will add to
the logger names.

Specifies which logging
implementation MyBatis
should use. If this setting
is not present logging
implementation will be
autodiscovered.

Specifies the proxy tool
that MyBatis will use for
creating lazy loading
capable objects.

Specifies VFS
implementations

Allow referencing
statement parameters

by their actual names
declared in the method
signature. To use this
feature, your project must
be compiled in Java 8
with - par anmet er s
option. (Since: 3.4.1)

ALL RIGHTS RESERVED.

true | false

true | false

Any String

SLF4J |
LOG4J(deprecated
since 3.5.9) | LOG4J2

| IDK_LOGGING |
COMMONS_LOGGING
| STDOUT_LOGGING |
NO_LOGGING

CGLIB (deprecated since
3.5.10) | JAVASSIST

Fully qualified class
names of custom VFS
implementation separated
by commas.

true | false

13

false

false

Not set

Not set

JAVASSIST (MyBatis 3.3
or above)

Not set

true

3 Configuration XML

configurationFactory

shrinkWhitespacesInSq|

defaultSqlProviderType

nullableOnForEach

Specifies the class that A type alias or fully
provides an instance of qualified class name.
Confi gurati on. The

returned Configuration

instance is used to

load lazy properties of

deserialized objects. This

class must have a method

with a signature st at i ¢

Configuration

get Confi guration().

(Since: 3.2.3)

Removes extra true | false
whitespace characters

from the SQL. Note that

this also affects literal

strings in SQL. (Since

3.5.5)

Specifies an sql A type alias or fully
provider class that qualified class name
holds provider method

(Since 3.5.6). This class

apply to the t ype(or

val ue) attribute on sgl

provider annotation(e.qg.

@el ect Provi der),

when these attribute was

omitted.

Specifies the default value true | false
of 'nullable’ attribute on
‘foreach’ tag. (Since 3.5.9)

argNameBasedConstructor, When applying true | false

constructor auto-mapping,
argument name is used
to search the column to
map instead of relying on
the column order. (Since
3.5.10)

An example of the settings element fully configured is as follows:

©2022,

MyBatis.org -

ALL RIGHTS RESERVED.

Not set

false

Not set

false

false

14

3 Configuration XML 15

<settings>
<setting name="cacheEnabl ed" val ue="true"/>
<setting name="I| azyLoadi ngEnabl ed" val ue="true"/>
<setting name="nul ti pl eResul t Set sEnabl ed" val ue="true"/>
<setting name="useCol umLabel " val ue="true"/>
<setting name="useGener at edKeys" val ue="fal se"/>
<setting name="aut oMappi ngBehavi or" val ue="PARTI AL"/ >
<setting name="aut oMappi ngUnknownCol utmBehavi or" val ue="WARNI NG' /| >
<setting name="def aul t Execut or Type" val ue="SI MPLE"/ >
<setting name="def aul t St at enent Ti neout" val ue="25"/>
<setting name="def aul t Fet chSi ze" val ue="100"/>
<setting name="saf eRowBoundsEnabl ed" val ue="fal se"/>
<setting name="mapUnder scor eToCanel Case" val ue="fal se"/>
<setting name="I| ocal CacheScope" val ue="SESSI ON'/ >
<setting name="jdbcTypeFor Nul | " val ue="OTHER"/ >
<setting name="l| azyLoadTri gger Met hods"

val ue="equal s, cl one, hashCode, toStri ng"/ >
</settings>

3.1.3 typeAliases

A typealiasis simply ashorter name for a Javatype. It's only relevant to the XML configuration and
simply exists to reduce redundant typing of fully qualified classnames. For example:

<typeAl i ases>
<typeAlias alias="Author" type="domain. bl og. Aut hor"/>
<typeAlias alias="Blog" type="domain. bl og. Bl 0og"/ >
<typeAlias alias="Conment" type="donain. bl og. Comment"/>
<typeAlias alias="Post" type="domain. bl og. Post"/>
<typeAlias alias="Section" type="donain. bl og. Section"/>
<typeAlias alias="Tag" type="domain. bl og. Tag"/>

</typeAliases>

With this configuration, Bl og can now be used anywhere that domai n. bl og. Bl og could be.
Y ou can also specify a package where MyBatis will search for beans. For example:

<typeAl i ases>
<package nane="donai n. bl og"/>
</typeAliases>

Each bean found in domai n. bl og , if no annotation isfound, will be registered as an dlias using
uncapitalized non-qualified class name of the bean. That isdomai n. bl og. Aut hor will be registered
asaut hor . If the @\ i as annotation is found its value will be used as an alias. See the example
below:

@\ i as("author")
public class Author {

}

©2022, MyBatis.org « ALL RIGHTS RESERVED.

3 Configuration XML

There are many built-in type aliases for common Javatypes. They are all case insensitive, note the
specia handling of primitives due to the overloaded names.

_byte

_char (since 3.5.10)
_character (since 3.5.10)
_long

_short

_int

_integer

_double

_float

_boolean

string

byte

char (since 3.5.10)
character (since 3.5.10)
long

short

int

integer

double

float

boolean

date

decimal
bigdecimal
biginteger

object

date[]

decimal[]
bigdecimall]
biginteger[]
object[]

map

hashmap

list

arraylist

collection

©2022, MyBatis.org « ALL RIGHTS RESERVED.

byte

char

char

long

short

int

int

double
float
boolean
String

Byte
Character
Character
Long
Short
Integer
Integer
Double
Float
Boolean
Date
BigDecimal
BigDecimal
Biginteger
Object
Datel]
BigDecimal[]
BigDecimal[]
Biglnteger][]
Object[]
Map
HashMap
List
ArrayList

Collection

16

3 Configuration XML 17

iterator Iterator

3.1.4 typeHandlers

Whenever MyBatis sets a parameter on a PreparedStatement or retrieves a value from a ResultSet, a
TypeHandler is used to retrieve the value in a means appropriate to the Java type. The following table
describes the default TypeHandlers.

NOTE Since version 3.4.5, MyBatis supports JSR-310 (Date and Time API) by default.

Bool eanTypeHand! er j ava. | ang. Bool ean, Any compatible BOOLEAN
bool ean

Byt eTypeHandl er j ava. |l ang. Byt e, byte Any compatible NUVERI Cor
BYTE

Shor t TypeHandl er j ava. |l ang. Short,short Any compatible NUVERI Cor
SMALLI NT

I nt eger TypeHandl er java.l ang. I nt eger,i nt Any compatible NUMERI C or
| NTEGER

LongTypeHandl er j ava. |l ang. Long, | ong Any compatible NUMERI C or
Bl G NT

Fl oat TypeHandl| er j ava. |l ang. Fl oat, f| oat Any compatible NUMVERI Cor
FLOAT

Doubl eTypeHand! er j ava. | ang. Doubl e, doubl e Any compatible NUVERI Cor
DOUBLE

Bi gDeci mal TypeHand! er j ava. mat h. Bi gDeci mal Any compatible NUMERI C or
DECI MAL

Stri ngTypeHandl er java.lang. String CHAR, VARCHAR

Cl obReader TypeHandl er j ava.i o. Reader -

G obTypeHandl er java.lang. String CLOB, LONGVARCHAR

NSt ri ngTypeHand! er java.lang. String NVARCHAR, NCHAR

NCl obTypeHandl er java.lang. String NCLOB

Bl obl nput St r eaniTypeHandl| €j ava. i 0. | nput St ream -

Byt eArr ayTypeHandl er byt e[] Any compatible byte stream type

Bl obTypeHandl| er byt e[] BLOB, LONGVARBI NARY

Dat eTypeHand! er java.util.Date TI MESTAMP

Dat eOnl yTypeHandl er java.util.Date DATE

Ti meOnl yTypeHandl er java.util.Date TI ME

Sql Ti mest anpTypeHandl er java. sql . Ti nest anp TI MESTAMP

Sql Dat eTypeHandl er j ava. sql . Dat e DATE

Sql Ti meTypeHandl er j ava. sql . Ti me TI ME

hj ect TypeHandl er Any OTHER, or unspecified

©2022, MyBatis.org « ALL RIGHTS RESERVED.

3 Configuration XML

18

EnunirypeHandl er Enumeration Type VARCHAR any string compatible
type, as the code is stored (not
index).

Enuntr di nal TypeHandl er Enumeration Type Any compatible NUMERI C or

Sql xm TypeHandl er j ava. | ang.
I nst ant TypeHandl er java.tine
Local Dat eTi meTypeHandl er java.time
Local Dat eTypeHand! er java.tine
Local Ti mneTypeHand! er java.tine
O f set Dat eTi neTypeHandl| erj ava. ti me
O fset Ti neTypeHandl er java.tine
ZonedDat eTi neTypeHandl er java.tine
Year TypeHand! er java.tine
Mont hTypeHandl| er java.tine
Year Mont hTypeHand! er java.tine
JapaneseDat eTypeHandl er java.tinme

DOUBLE, as the position is stored
(not the code itself).

String SQLXM-
. I nst ant TI MESTAMP
. Local Dat eTi me Tl MESTAMP
. Local Dat e DATE
. Local Ti ne TI VE
. O fsetDateTime TI MESTAVP
.OfsetTinme TI VE
. ZonedDat eTi ne TI MESTAWP
. Year | NTEGER
. Mont h | NTEGER
. Year Mont h VARCHAR or LONGVARCHAR

. chrono. Japanese DATE

Y ou can override the type handlers or create your own to deal with unsupported or non-standard
types. To do so, implement the interface or g. apache. i bati s. t ype. TypeHandl er or extend
the convenience classor g. apache. i bati s. t ype. BaseTypeHandl er and optionally mapitto a

JDBC type. For example:

©2022, MyBatis.org « ALL RIGHTS RESERVED.

3 Configuration XML 19

/1 Exanpl eTypeHandl| er. j ava
@mappedJdbcTypes(JdbcType. VARCHAR)
public class Exanmpl eTypeHandl er ext ends BaseTypeHandl er<Stri ng> {

@verride
public void set NonNul | Paranet er (PreparedStatenent ps, int i,

String paraneter, JdbcType jdbcType) throws SQLException {
ps.setString(i, paraneter);

}

@verride
public String getNull abl eResult(ResultSet rs, String col unmNane)

t hrows SQLException {
return rs.getString(col utmNane);

}

@verride
public String getNull abl eResult(ResultSet rs, int col uml ndex)

t hrows SQLException {
return rs.getString(col uml ndex);

}

@verride
public String getNull abl eResult(Call abl eStatenent cs, int col umlindex)

t hrows SQLException {
return cs.getString(col uml ndex);

}
}

<l-- nybatis-config.xm -->
<t ypeHandl| er s>

<typeHandl er handl er="or g. nybati s. exanpl e. Exanpl eTypeHandl er"/ >
</ typeHandl er s>

Using such a TypeHandler would override the existing type handler for Java String properties

and VARCHAR parameters and results. Note that MyBatis does not introspect upon the database
metadata to determine the type, so you must specify that it'sa VARCHAR field in the parameter and
result mappings to hook in the correct type handler. Thisis due to the fact that MyBatis is unaware of
the data type until the statement is executed.

MyBatis will know the Java type that you want to handle with this TypeHandler by introspecting its
generic type, but you can override this behavior by two means.

» Adding aj avaType attribute to the typeHandler element (for example: j avaType="Stri ng")

» Adding a @appedTypes annotation to your TypeHandler class specifying the list of java
typesto associate it with. This annotation will beignored if thej avaType attribute as also been
specified.

The associated JDBC type can be specified by two means:

» Adding aj dbcType attribute to the typeHandler element (for example:
j dbcType="VARCHAR").

©2022, MyBatis.org « ALL RIGHTS RESERVED.

3 Configuration XML 20

* Adding a @appedJdbcTypes annotation to your TypeHandler class specifying the list of
JDBC typesto associate it with. This annotation will be ignored if thej dbcType attribute as
also been specified.

When deciding which TypeHandler to usein aResul t Map, the Javatypeis known (from

the result type), but the IDBC type is unknown. MyBatis therefore uses the combination

j avaType=[TheJavaType], jdbcType=nul| tochooseaTypeHandler. This meansthat using
a @mppedJdbcTypes annotation restricts the scope of a TypeHandler and makesit unavailable for
usein Resul t Mapsunless explicity set. To make a TypeHandler available for usein aResul t Map,
seti ncl udeNul | JdbcType=t r ue on the @appedJdbcTypes annotation. Since Mybatis 3.4.0
however, if asingle TypeHandler isregistered to handle a Javatype, it will be used by default in
Resul t Mapsusing this Javatype (i.e. even without i ncl udeNul | JdbcType=t r ue).

And finally you can let MyBatis search for your TypeHandlers:

<l-- nybatis-config.xm -->
<t ypeHandl| er s>

<package nanme="org.nybatis. exanple"/>
</ typeHandl er s>

Note that when using the autodiscovery feature JDBC types can only be specified with annotations.

Y ou can create ageneric TypeHandler that is able to handle more than one class. For that purpose
add a constructor that receives the class as a parameter and MyBatis will pass the actual class when
constructing the TypeHandler.

/] Generi cTypeHandl er. j ava
public class GenericTypeHandl er<E ext ends MyQhj ect > ext ends BaseTypeHandl er <> {

private C ass<E> type;

public GenericTypeHandl er (Cl ass<E> type) {
if (type == null) throw new Il | egal Argunent Exception(" Type argunent cannot be n
this.type = type;
}

EnunilypeHand! er and EnunOr di nal TypeHand! er are generic TypeHandlers. We will learn
about them in the following section.

3.1.5 Handling Enums

If you want to map an Enum you'll need to use either EnuniTypeHandl er or
EnunOr di nal TypeHandl er .

For example, let's say that we need to store the rounding mode that should be used with some number
if it needs to be rounded. By default, MyBatis uses EnunTypeHand! er to convert the Enumvaluesto
their names.

Note EnunilypeHandl er isspecial in the sensethat unlike other handlers, it does not handle just
one specific class, but any classthat extends Enum

However, we may not want to store names. Our DBA may insist on an integer code instead. That's
just as easy: add EnuntOr di nal TypeHandl| er tothet ypeHandl er s inyour config file, and now
each Roundi ngvbde will be mapped to an integer using its ordinal value.

©2022, MyBatis.org « ALL RIGHTS RESERVED.

3 Configuration XML 21

<l-- nybatis-config.xm -->
<t ypeHandl| er s>
<typeHandl er handl er="or g. apache. i batis. type. EnunOr di nal TypeHandl er"
j avaType="j ava. mat h. Roundi nghbde" / >
</typeHandl er s>

But what if you want to map the same Enumto a string in one place and to integer in another?

The auto-mapper will automatically use Enuntr di nal TypeHandl er, so if we want to go back to
using plain old ordinary EnumTypeHandl er , we haveto tell it, by explicitly setting the type handler
to use for those SQL statements.

(Mapper files aren't covered until the next section, so if thisisyour first time reading through the
documentation, you may want to skip this for now and come back to it later.)

©2022, MyBatis.org « ALL RIGHTS RESERVED.

3 Configuration XML 22

<! DOCTYPE mapper
PUBLIC "-//nybatis.org//DID Mapper 3.0//EN'
"http://nybatis.org/dtd/ nybatis-3-mapper.dtd">

<mapper namespace="org. apache.ibatis. subm tted.roundi ng. Mapper" >
<resul t Map type="org. apache.ibatis.subnitted. roundi ng.User" idz"usermp">
<id colum="id" property="id"/>
<result col um="name" property="nane"/>
<result col um="funkyNunber" property="funkyNunber"/>
<result col um="roundi nghbde" property="roundi nghbde"/>
</resul t Map>

<sel ect id="getUser" resultMp="usernmp">
sel ect * fromusers
</ sel ect >
<insert id="insert">
insert into users (id, nane, funkyNunber, roundi nghMode) values (
#{id}, #{name}, #{funkyNunber}, #{roundi nghbde}
)

</insert>

<resul t Map type="org.apache.ibatis.subnm tted.roundi ng. User" id="usermp2">
<id colum="id" property="id"/>
<result col um="name" property="nane"/>
<result col um="funkyNunber" property="funkyNunber"/>
<result col um="roundi nghbde" property="roundi nghbde"
t ypeHandl er =" or g. apache. i bati s. t ype. EnumlypeHandl er"/ >
</resul t Map>
<sel ect id="getUser2" resultMp="usermap2">
sel ect * from users2
</ sel ect >
<insert id="insert2">
insert into users2 (id, nane, funkyNunber, roundi nghbde) val ues (
#{id}, #{name}, #{funkyNunber}, #{roundi ngvbde, typeHandl er=org. apache.
)

</insert>

</ mapper >

Note that thisforcesusto usear esul t Map instead of ar esul t Type in our select statements.

3.1.6 objectFactory

Each time MyBaitis creates a new instance of aresult object, it uses an ObjectFactory instance to

do so. The default ObjectFactory does little more than instantiate the target class with a default
constructor, or a parameterized constructor if parameter mappings exist. If you want to override the
default behaviour of the ObjectFactory, you can create your own. For example:

©2022, MyBatis.org « ALL RIGHTS RESERVED.

3 Configuration XML 23

/1 Exanpl eCbj ect Factory. java
public class Exanpl eCbj ect Fact ory extends Defaul t Obj ect Factory ({

@verride

public <T> T create(d ass<T> type) {
return super.create(type);

}

@verride

return super.create(type, constructorArgTypes, constructorArgs);

}
@verride

public void setProperties(Properties properties) {
super . set Properti es(properties);
}

@verride

public <T> bool ean isCollection(Cd ass<T> type) {
return Col |l ection.class.isAssignabl eFron(type);
}

}

<l-- nybatis-config.xm -->

<obj ect Factory type="org. nybatis. exanpl e. Exanpl eCbj ect Fact ory" >
<property nane="someProperty" val ue="100"/>

</ obj ect Fact ory>

The ObjectFactory interface is very simple. It contains two create methods, one to deal with the
default constructor, and the other to deal with parameterized constructors. Finally, the setProperties
method can be used to configure the ObjectFactory. Properties defined within the body of the
objectFactory element will be passed to the setProperties method after initialization of your
ObjectFactory instance.

3.1.7 plugins

MyBatis allows you to intercept calls to at certain points within the execution of a mapped statement.
By default, MyBatis allows plug-ins to intercept method calls of:

» Executor (update, query, flushStatements, commit, rollback, getTransaction, close, isClosed)
o ParameterHandler (getParameterObject, setParameters)

* ResultSetHandler (handleResultSets, handleOutputParameters)

» StatementHandler (prepare, parameterize, batch, update, query)

The details of these classes methods can be discovered by looking at the full method signature of
each, and the source code which is available with each MyBatis release. Y ou should understand

the behaviour of the method you’ re overriding, assuming you’ re doing something more than just
monitoring calls. If you attempt to modify or override the behaviour of a given method, you're likely
to break the core of MyBatis. These are low level classes and methods, so use plug-ins with caution.

Using plug-insis pretty simple given the power they provide. Simply implement the Interceptor
interface, being sure to specify the signatures you want to intercept.

©2022, MyBatis.org « ALL RIGHTS RESERVED.

public <T> T create(d ass<T> type, List<C ass<?>> constructorArgTypes,

Li st <Cbj ec

3 Configuration XML 24

/1 Exanpl ePl ugi n.java
@ nt er cept s({ @i gnat ur e(
type= Executor. cl ass,
met hod = "update”,
args = {MappedSt at enent . cl ass, Obj ect. class})})
public class Exanpl ePlugin inplements Interceptor ({
private Properties properties = new Properties();

@verride

public Object intercept(lnvocation invocation) throws Throwabl e {
/1 inplenent pre-processing if needed
hj ect returnChject = invocation. proceed();
/1 inplenent post-processing if needed
return returnQbject;

}
@verride

public void setProperties(Properties properties) {
this.properties = properties;
}
}

<l-- nybatis-config.xm -->
<pl ugi ns>
<plugi n interceptor="org. nybatis. exanpl e. Exanpl ePl ugi n" >
<property nane="sonmeProperty" val ue="100"/>
</ pl ugi n>
</ pl ugi ns>

The plug-in above will intercept all callsto the "update" method on the Executor instance, which isan
internal object responsible for the low-level execution of mapped statements.

NOTE Overriding the Configuration Class

In addition to modifying core MyBatis behaviour with plugins, you can also override the

Confi gur at i on classentirely. Simply extend it and override any methodsinside, and passit into the
call tothe Sql Sessi onFact or yBui | der. bui | d(myConfi g) method. Again though, this could
have a severe impact on the behaviour of MyBatis, so use caution.

3.1.8 environments

MyBatis can be configured with multiple environments. This helps you to apply your SQL Mapsto
multiple databases for any number of reasons. For example, you might have a different configuration
for your Development, Test and Production environments. Or, you may have multiple production
databases that share the same schema, and you' d like to use the same SQL maps for both. There are
many use Cases.

Oneimportant thing to remember though: While you can configure multiple environments, you
can only choose ONE per SglSessionFactory instance.

So if you want to connect to two databases, you need to create two instances of SglSessionFactory,

one for each. For three databases, you’ d need three instances, and so on. It's really easy to remember:
» One SglSessionFactory instance per database

To specify which environment to build, you simply passit to the Sgl SessionFactoryBuilder as an

optional parameter. The two signatures that accept the environment are:

©2022, MyBatis.org « ALL RIGHTS RESERVED.

3 Configuration XML 25

Sql Sessi onFactory factory
Sql Sessi onFactory factory

new Sgl Sessi onFact or yBui | der (). bui | d(reader, environnen
new Sgl Sessi onFact or yBui | der (). bui | d(reader, environnen

If the environment is omitted, then the default environment is loaded, as follows:

Sql Sessi onFactory factory
Sql Sessi onFactory factory

new Sgl Sessi onFact oryBui |l der (). bui | d(reader);
new Sql Sessi onFact oryBui | der (). bui | d(reader, properties

The environments el ement defines how the environment is configured.

<environnents defaul t ="devel opnent">
<envi ronnent id="devel opnent">
<transacti onManager type="JDBC'>
<property nane="..." value="..."/>
</transacti onManager >
<dat aSour ce type="POOLED" >
<property name="driver" value="${driver}"/>
<property name="url" val ue="${url}"/>
<property name="usernane" val ue="${usernane}"/>
<property name="password" val ue="${password}"/>
</ dat aSour ce>
</ envi ronnment >
</ envi ronnment s>

Notice the key sections here:

» The default Environment 1D (e.g. default="development").

» The Environment ID for each environment defined (e.g. id="development").
» The TransactionManager configuration (e.g. type="JDBC")

» The DataSource configuration (e.g. type="POOLED")

The default environment and the environment 1Ds are self explanatory. Name them whatever you like,
just make sure the default matches one of them.

transactionM anager

There are two TransactionManager types (i.e. type="[JDBCIMANAGED]") that are included with
MyBdtis:

» JDBC —This configuration simply makes use of the JIDBC commit and rollback facilities
directly. It relies on the connection retrieved from the dataSource to manage the scope of the
transaction. By default, it enables auto-commit when closing the connection for compatibility
with some drivers. However, for some drivers, enabling auto-commit is not only unnecesry, but
also is an expensive operation. So, since version 3.5.10, you can skip this step by setting the
"skipSetAutoCommitOnClose" property to true. For example:

<transacti onManager type="JDBC'>
<property nanme="ski pSet Aut oComm t OnCl ose" val ue="true"/>
</transacti onManager >

» MANAGED - This configuration simply does almost nothing. It never commits, or rolls back
aconnection. Instead, it lets the container manage the full lifecycle of the transaction (e.g.
a JEE Application Server context). By default it does close the connection. However, some
containers don't expect this, and thus if you need to stop it from closing the connection, set the
"closeConnection” property to false. For example:

©2022, MyBatis.org « ALL RIGHTS RESERVED.

3 Configuration XML 26

<transacti onManager type="MANAGED" >
<property nane="cl oseConnection" val ue="fal se"/>
</transacti onManager >

NOTE If you are planning to use MyBatis with Spring there is no need to configure any
TransactionManager because the Spring module will set its own one overriding any previously set
configuration.

Neither of these TransactionManager types require any properties. However, they are both Type
Aliases, so in other words, instead of using them, you could put your own fully qualified class name
or Type Alias that refers to your own implementation of the TransactionFactory interface.

public interface Transacti onFactory {

/1 NoP
}

Transacti on newlransacti on(Connecti on conn);

}

Any properties configured in the XML will be passed to the setProperties() method after instantiation.
Y our implementation would a so need to create a Transaction implementation, which is also avery
simple interface:

public interface Transaction {
Connection get Connection() throws SQ.LException;
void commit() throws SQ.Exception;
voi d roll back() throws SQ.Exception;
void close() throws SQLException;
I nteger getTineout() throws SQ.Exception;

}

Using these two interfaces, you can completely customize how MyBatis deals with Transactions.
dataSource

The dataSource element configures the source of JDBC Connection objects using the standard JDBC
DataSource interface.

Most MyBatis applications will configure a dataSource as in the example. However, it' s not required.
Realize though, that to facilitate Lazy Loading, this dataSourceis required.

There are three built-in dataSource types (i.e. type="[UNPOOLED|POOLED|INDI]"):

UNPOOL ED - Thisimplementation of DataSource simply opens and closes a connection each time
it isrequested. Whileit's abit slower, thisis a good choice for simple applications that do not require
the performance of immediately available connections. Different databases are also different in this
performance area, so for some it may be less important to pool and this configuration will be ideal.
The UNPOOLED DataSource has the following properties to configure:

e driver —Thisisthefully qualified Java class of the JIDBC driver (NOT of the DataSource class
if your driver includes one).

e url —Thisisthe IDBC URL for your database instance.
* user nane — The database username to log in with.
» passwor d - The database password to log in with.

©2022, MyBatis.org « ALL RIGHTS RESERVED.

Transacti on newlransacti on(Dat aSource dat aSource, Transactionlsollati onLevel

default void setProperties(Properties props) { // Since 3.5.2, change to default

| evel

3 Configuration XML 27

e defaul t Transacti onl sol ati onLevel —Thedefault transaction isolation level for
connections.

» def aul t Net wor kTi meout — The default network timeout value in milliseconds
to wait for the database operation to complete. See the APl documentation of
j ava. sql . Connecti on#set Net wor kTi meout () for details.

Optionally, you can pass properties to the database driver aswell. To do this, prefix the properties
withdri ver. , for example:

e driver. encodi ng=UTF8

Thiswill pass the property encodi ng, with the value UTF8, to your database driver viathe
Dri ver Manager . get Connection(url, driverProperties) method.

POOLED - Thisimplementation of DataSource pools JDBC Connection objects to avoid the initial
connection and authentication time required to create a new Connection instance. Thisis a popular
approach for concurrent web applications to achieve the fastest response.

In addition to the (UNPOOLED) properties above, there are many more properties that can be used to
configure the POOLED datasource:

* pool Maxi mumAct i veConnect i ons — Thisisthe number of active (i.e. in use) connections that
can exist at any given time. Default: 10

* pool Maxi mum dl eConnect i ons — The number of idle connections that can exist at any given
time.

* pool Maxi muntCheckout Ti me — Thisisthe amount of time that a Connection can be "checked
out" of the pool beforeit will be forcefully returned. Default: 20000ms (i.e. 20 seconds)

» pool Ti neToVai t —Thisisalow level setting that gives the pool a chance to print alog status
and re-attempt the acquisition of a connection in the case that it's taking unusually long (to avoid
failing silently forever if the pool is misconfigured). Default: 20000ms (i.e. 20 seconds)

» pool Maxi mumLocal BadConnect i onTol er ance — Thisisalow level setting about
tolerance of bad connections got for any thread. If athread got a bad connection, it may
still have another chance to re-attempt to get another connection which isvalid. But the
retrying times should not more than the sum of pool Maxi mumi dl eConnect i ons and
pool Maxi munLocal BadConnect i onTol er ance. Default: 3 (Since: 3.4.5)

* pool Pi ngQuery — The Ping Query is sent to the database to validate that a connectionisin
good working order and is ready to accept requests. The default is"NO PING QUERY SET",
which will cause most database driversto fail with a decent error message.

» pool Pi ngEnabl ed — This enables or disables the ping query. If enabled, you must also set the
pool PingQuery property with avalid SQL statement (preferably a very fast one). Default: false.

* pool Pi ngConnect i onsNot UsedFor — This configures how often the pool PingQuery
will be used. This can be set to match the typical timeout for a database connection, to
avoid unnecessary pings. Default: O (i.e. all connections are pinged every time — but only if
pool PingEnabled is true of course).

JNDI — Thisimplementation of DataSource is intended for use with containers such as EJB or
Application Servers that may configure the DataSource centrally or externally and place areference to
itinaJNDI context. This DataSource configuration only requires two properties:

e initial _context —Thisproperty isused for the Context lookup from the Initial Context
(i.e. initial Context.lookup(initial_context)). This property isoptional, and if omitted, then the
data_source property will be looked up against the Initial Context directly.

» dat a_sour ce — Thisisthe context path where the reference to the instance of the DataSource
can be found. It will be looked up against the context returned by the initial _context lookup, or
against the Initial Context directly if no initial_context is supplied.

Similar to the other DataSource configurations, it's possible to send properties directly to the
Initial Context by prefixing those properties with env. , for example:

©2022, MyBatis.org « ALL RIGHTS RESERVED.

3 Configuration XML 28

* env. encodi ng=UTF8
Thiswould send the property encodi ng with the value of UTF8 to the constructor of the
Initial Context upon instantiation.

Y ou can plug any 3rd party DataSource by implementing the interface
org. apache. i bati s. dat asour ce. Dat aSour ceFactory:

public interface DataSourceFactory {
voi d setProperties(Properties props);
Dat aSour ce get Dat aSource();

}

org. apache. i bat i s. dat asour ce. unpool ed. Unpool edDat aSour ceFact or y can be used as
super class to build new datasource adapters. For example thisis the code needed to plug C3PO:

i mport org.apache.ibatis. datasource. unpool ed. Unpool edDat aSour ceFact ory;
i mport com nthange. v2. ¢3p0. ConboPool edDat aSour ce;

public class C3P0Dat aSour ceFactory extends Unpool edDat aSour ceFactony {

publ i c C3P0Dat aSour ceFactory() {
t hi s. dat aSour ce = new ConboPool edDat aSour ce() ;
}
}

To set it up, add a property for each setter method you want MyBatisto call. Follows below a sample
configuration which connects to a PostgreSQL database:

<dat aSour ce type="org. nyproj ect.C3P0Dat aSour ceFactory">
<property name="driver" val ue="org. postgresql.Driver"/>
<property nane="url" val ue="j dbc: post gresql : mydb"/ >
<property nane="usernane" val ue="postgres"/>
<property nane="password" val ue="root"/>

</ dat aSour ce>

3.1.9 databaseldProvider

MyBatisis able to execute different statements depending on your database vendor. The multi-db
vendor support is based on the mapped statements dat abasel d attribute. MyBatis will load all
statements with no dat abasel d attribute or with adat abasel d that matches the current one. In
case the same statement is found with and without the dat abasel d the latter will be discarded. To
enable the multi vendor support add adat abasel dPr ovi der to mybatis-config.xml file as follows:

<dat abasel dProvi der type="DB VENDOR' />

The DB_VENDOR implementation databasel dProvider sets as databasel d the String returned by

Dat abaseMet aDat a#get Dat abasePr oduct Name() . Given that usually that string is too long and
that different versions of the same product may return different values, you may want to convert it to a
shorter one by adding properties like follows:

©2022, MyBatis.org « ALL RIGHTS RESERVED.

3 Configuration XML 29

<dat abasel dProvi der type="DB VENDOR'>
<property nane="SQ Server" val ue="sql server"/>
<property nane="DB2" val ue="db2"/>
<property nane="Cracle" val ue="oracle" />

</ dat abasel dPr ovi der >

When properties are provided, the DB_VENDOR databasel dProvider will search the property value
corresponding to the first key found in the returned database product name or "null" if thereis not a
matching property. In this case, if get Dat abasePr oduct Name() returns"Oracle (DataDirect)" the
databaseld will be set to "oracle”.

Y ou can build your own Databasel dProvider by implementing the interface
or g. apache. i bati s. mappi ng. Dat abasel dPr ovi der and registering it in mybatis-config.xml:

public interface Databasel dProvider {
default void setProperties(Properties p) { // Since 3.5.2, changed to default net
/1 NOP
}
String get Dat abasel d(Dat aSour ce dat aSource) throws SQLExcepti on;

}

3.1.10 mappers

Now that the behavior of MyBatisis configured with the above configuration elements, we' re ready
to define our mapped SQL statements. But first, we need to tell MyBatis where to find them. Java
doesn't really provide any good means of auto-discovery in thisregard, so the best way to do it

isto smply tell MyBatis where to find the mapping files. Y ou can use classpath relative resource
references, fully qualified url references (includingfil e: /// URLS), class names or package names.
For example:

<l-- Using classpath relative resources -->

<mapper s>
<mapper resource="org/ nybatis/buil der/AuthorMapper.xm "/>
<mapper resource="org/ nybatis/buil der/Bl ogMapper.xm "/>
<mapper resource="org/ nybatis/buil der/Post Mapper.xm "/ >

</ mapper s>

<l-- Using url fully qualified paths -->

<mapper s>
<mapper url="file:///var/nmappers/Aut hor Mapper.xm "/ >
<mapper url="file:///var/mappers/ Bl ogMapper.xm"/>
<mapper url="file:///var/nmappers/Post Mapper.xm"/>

</ mapper s>

<l-- Using mapper interface classes -->

<mapper s>
<mapper cl ass="org.nybatis. buil der. Aut hor Mapper"/ >
<mapper cl ass="org. nybatis. buil der. Bl ogMapper"/>
<mapper cl ass="org. nybatis. buil der. Post Mapper"/>

</ mapper s>

©2022, MyBatis.org « ALL RIGHTS RESERVED.

3 Configuration XML 30

<I-- Register all interfaces in a package as mappers -->
<mapper s>

<package name="org.nybatis. builder"/>
</ mapper s>

These statement simply tell MyBatis where to go from here. The rest of the details are in each of the
SQL Mapping files, and that’ s exactly what the next section will discuss.

©2022, MyBatis.org « ALL RIGHTS RESERVED.

4 Mapper XML Files 31

Mapper XML Files

4.1 Mapper XML Files

The true power of MyBatisisin the Mapped Statements. This is where the magic happens. For all of
their power, the Mapper XML files are relatively simple. Certainly if you were to compare them to the
equivalent JDBC code, you would immediately see a savings of 95% of the code. MyBatis was built
to focus on the SQL, and does its best to stay out of your way.

The Mapper XML files have only afew first class elements (in the order that they should be defined):

» cache — Configuration of the cache for a given namespace.
» cache-ref —Referenceto a cache configuration from another namespace.

* resul t Map — The most complicated and powerful element that describes how to load your
objects from the database result sets.

» par anet er Map — Deprecated! Old-school way to map parameters. Inline parameters are
preferred and this element may be removed in the future. Not documented here.

* sqgl — A reusable chunk of SQL that can be referenced by other statements.
* insert —A mapped INSERT statement.

» updat e — A mapped UPDATE statement.

* del et e — A mapped DELETE statement.

» sel ect —A mapped SELECT statement.

The next sections will describe each of these elementsin detail, starting with the statements
themselves.

4.1.1 select

The select statement is one of the most popular elements that you'll use in MyBatis. Putting datain a
database isn't terribly valuable until you get it back out, so most applications query far more than they
modify the data. For every insert, update or delete, there are probably many selects. Thisis one of the
founding principles of MyBatis, and is the reason so much focus and effort was placed on querying
and result mapping. The select element is quite simple for simple cases. For example:

<sel ect id="sel ectPerson" paraneterType="int" resultType="hashnmap">
SELECT * FROM PERSON WHERE | D = #{i d}
</ sel ect >

This statement is called sel ectPerson, takes a parameter of type int (or Integer), and returns a
HashMap keyed by column names mapped to row val ues.

Notice the parameter notation:

#{i d}

Thistells MyBatisto create a PreparedStatement parameter. With JDBC, such a parameter would be
identified by a"?" in SQL passed to a new PreparedStatement, something like this:

/1 Simlar JDBC code, NOT MyBatis...

String sel ect Person = "SELECT * FROM PERSON WHERE | D=?";

Pr epar edSt at enent ps = conn. prepar eSt at ement (sel ect Person) ;
ps.setlnt(1,id);

©2022, MyBatis.org « ALL RIGHTS RESERVED.

4 Mapper XML Files

32

Of course, there's alot more code required by JDBC aone to extract the results and map them to an
instance of an object, which iswhat MyBatis saves you from having to do. There's alot more to know
about parameter and result mapping. Those details warrant their own section, which follows later in

this section.

The select element has more attributes that allow you to configure the details of how each statement

should behave.

<sel ect
i d="sel ect Per son"
par anet er Type="int"
par amet er Map="depr ecat ed"
resul t Type="hashmap"
resul t Map="per sonResul t Map"
fl ushCache="f al se"
useCache="true"
ti neout =" 10"
fetchSi ze="256"
st at ement Type=" PREPARED"
resul t Set Type="FORWARD ONLY" >

id

par anet er Type

par anmet er Map

resul t Type

resul t Map

fl ushCache

useCache

ti meout

©2022, MyBatis.org « ALL RIGHTS RESERVED.

A unique identifier in this namespace that can be used
to reference this statement.

The fully qualified class name or alias for the
parameter that will be passed into this statement. This
attribute is optional because MyBatis can calculate
the TypeHandler to use out of the actual parameter
passed to the statement. Default is unset .

This is a deprecated approach to referencing an
external par amet er Map. Use inline parameter
mappings and the par anmet er Type attribute.

The fully qualified class name or alias for the expected
type that will be returned from this statement. Note
that in the case of collections, this should be the

type that the collection contains, not the type of the
collection itself. Use r esul t Type OR r esul t Map,
not both.

A named reference to an external r esul t Map.
Result maps are the most powerful feature of MyBatis,
and with a good understanding of them, many difficult
mapping cases can be solved. Use r esul t Map OR
resul t Type, not both.

Setting this to true will cause the local and 2nd level
caches to be flushed whenever this statement is
called. Default: f al se for select statements.

Setting this to true will cause the results of this
statement to be cached in 2nd level cache. Default:
t r ue for select statements.

This sets the number of seconds the driver will wait for
the database to return from a request, before throwing
an exception. Default is unset (driver dependent).

4 Mapper XML Files

fetchSi ze

st at ement Type

resul t Set Type

dat abasel d

resul t Ordered

resul t Sets

33

This is a driver hint that will attempt to cause the
driver to return results in batches of rows numbering
in size equal to this setting. Default is unset (driver
dependent).

Any one of STATEMENT, PREPARED or CALLABLE.
This causes MyBatis to use St at enent ,

Pr epar edSt at enent or Cal | abl eSt at errent
respectively. Default: PREPARED.

Any one of FORWARD_ONLY]

SCROLL_SENSI Tl VE| SCROLL_| NSENSI TI VE|
DEFAUL T(same as unset). Default is unset (driver
dependent).

In case there is a configured databaseldProvider,
MyBatis will load all statements with no dat abasel d
attribute or with a dat abasel d that matches the
current one. If case the same statement if found

with and without the dat abasel d the latter will be
discarded.

This is only applicable for nested result select
statements: If this is true, it is assumed that nested
results are contained or grouped together such that
when a new main result row is returned, no references
to a previous result row will occur anymore. This
allows nested results to be filled much more memory
friendly. Default: f al se.

This is only applicable for multiple result sets. It lists
the result sets that will be returned by the statement
and gives a name to each one. Names are separated
by commas.

Select Attributes

4.1.2 insert, update and delete
The data modification statements insert, update and delete are very similar in their implementation:

©2022, MyBatis.org =

ALL RIGHTS RESERVED.

4 Mapper XML Files

34

<i nsert
i d="insert Aut hor"

fl ushCache="true"

st at ement Type=" PREPARED"
keyProperty=""
keyCol um=""
useGener at edKeys=
ti meout =" 20" >

<updat e
i d="updat eAut hor "

fl ushCache="true"
st at ement Type=" PREPARED"
ti meout =" 20" >

<del et e
i d="del et eAut hor"

fl ushCache="true"
st at ement Type=" PREPARED"
ti meout =" 20" >

par anmet er Type="domai n. bl og. Aut hor"

par anmet er Type="domai n. bl og. Aut hor"

par anmet er Type="domai n. bl og. Aut hor"

id

par anmet er Type

par anmet er Map

fl ushCache

ti meout

st at ement Type

©2022, MyBatis.org « ALL RIGHTS RESERVED.

A unique identifier in this namespace that can be used
to reference this statement.

The fully qualified class name or alias for the
parameter that will be passed into this statement. This
attribute is optional because MyBatis can calculate
the TypeHandler to use out of the actual parameter
passed to the statement. Default is unset .

This is a deprecated approach to referencing an
external parameterMap. Use inline parameter
mappings and the parameterType attribute.

Setting this to true will cause the 2nd level and local
caches to be flushed whenever this statement is
called. Default: t r ue for insert, update and delete
statements.

This sets the maximum number of seconds the driver
will wait for the database to return from a request,
before throwing an exception. Default is unset
(driver dependent).

Any one of STATEMENT, PREPARED or CALLABLE.
This causes MyBatis to use St at enent ,

Pr epar edSt at enent or Cal | abl eSt at errent
respectively. Default: PREPARED.

4 Mapper XML Files 35

useGener at edKeys (insert and update only) This tells MyBatis to use the
JDBC get Gener at edKeys method to retrieve
keys generated internally by the database (e.g.
auto increment fields in RDBMS like MySQL or SQL
Server). Default: f al se.

keyProperty (insert and update only) Identifies a property into
which MyBatis will set the key value returned by
get Gener at edKeys, or by a sel ect Key child
element of the insert statement. Default: unset .
Can be a comma separated list of property names if
multiple generated columns are expected.

keyCol um (insert and update only) Sets the name of the column
in the table with a generated key. This is only required
in certain databases (like PostgreSQL) when the key
column is not the first column in the table. Can be a
comma separated list of columns names if multiple
generated columns are expected.

dat abasel d In case there is a configured databaseldProvider,
MyBatis will load all statements with no dat abasel d
attribute or with a dat abasel d that matches the
current one. If case the same statement if found
with and without the dat abasel d the latter will be
discarded.

Insert, Update and Delete Attributes
The following are some examples of insert, update and del ete statements.

<insert id="insertAuthor">
insert into Author (id, usernane, password, enail, bi 0)
val ues (#{id}, #{usernane}, #{ password}, #{enui | }, #{ bi 0})
</insert>

<updat e i d="updat eAut hor" >
updat e Aut hor set

user name = #{usernane},

password = #{password},

emai | = #{emil},
bi o = #{bi o}
where id = #{id}
</ updat e>

<del et e i d="del et eAut hor">
del ete from Aut hor where id = #{id}
</ del et e>

As mentioned, insert isalittle bit morerich in that it has afew extra attributes and sub-elements that
alow it to deal with key generation in anumber of ways.

First, if your database supports auto-generated key fields (e.g. MySQL and SQL Server), then you can
simply set useGener at edKeys="t r ue" and set thekeyPr operty to the target property and you're
done. For example, if the Aut hor table above had used an auto-generated column type for the id, the
statement would be modified as follows:

©2022, MyBatis.org « ALL RIGHTS RESERVED.

4 Mapper XML Files

<insert id="insertAuthor" useCeneratedKeys="true"
keyProperty="id">
insert into Author (usernane, password, email, bi 0)
val ues (#{usernane}, #{password}, #{emai |l }, #{bi 0})
</insert>

36

If your database also supports multi-row insert, you can pass alist or an array of Aut hor sand retrieve

the auto-generated keys.

<insert id="insertAuthor" useCGeneratedKeys="true"
keyProperty="id">
insert into Author (usernanme, password, enail, bio) val ues

<foreach iten"itent collection="list" separator=",">

</ f or each>
</insert>

(#{itemusernane}, #{item password}, #{itemenmil}, #{item bio}

~

MyBatis has another way to deal with key generation for databases that don't support auto-generated

column types, or perhaps don't yet support the JDBC driver support for auto-generated keys.

Here's asimple (silly) example that would generate arandom ID (something you'd likely never do,

but this demonstrates the flexibility and how MyBatis really doesn't mind):

<insert id="insertAuthor">
<sel ect Key keyProperty="id" resultType="int" order="BEFORE">

</ sel ect Key>
insert into Author

(id, usernane, password, enmil, bio, favourite_section)
val ues

</insert>

sel ect CAST(RANDOM) *1000000 as | NTEGER) a from SYSI BM SYSDUMW

(#{id}, #{usernane}, #{password}, #{emmil}, #{bio}, #{favourite

1

2Section, j dbcType

In the example above, the selectK ey statement would be run first, the Aut hor id property would
be set, and then the insert statement would be called. This gives you a similar behavior to an auto-

generated key in your database without complicating your Java code.
The selectKey element is described as follows:

<sel ect Key
keyProperty="id"
resul t Type="int"
or der =" BEFORE"
st at enent Type=" PREPARED" >

keyProperty The target property where the result of the

sel ect Key statement should be set. Can be a

comma separated list of property names if multiple

generated columns are expected.

©2022, MyBatis.org « ALL RIGHTS RESERVED.

4 Mapper XML Files 37

keyCol um The column name(s) in the returned result set that
match the properties. Can be a comma separated list
of column names if multiple generated columns are
expected.

resul t Type The type of the result. MyBatis can usually figure
this out, but it doesn't hurt to add it to be sure.
MyBatis allows any simple type to be used as the
key, including Strings. If you are expecting multiple
generated columns, then you can use an Object that
contains the expected properties, or a Map.

or der This can be set to BEFORE or AFTER If set to
BEFORE, then it will select the key first, set the
keyPr operty and then execute the insert
statement. If set to AFTER it runs the insert statement
and then the sel ect Key statement — which is
common with databases like Oracle that may have
embedded sequence calls inside of insert statements.

st at ement Type Same as above, MyBatis supports STATEMENT,
PREPARED and CALLABLE statement types that
map to St at enent , Pr epar edSt at enent and
Cal | abl eSt at enment respectively.

selectK ey Attributes

4.1.3 sql

This element can be used to define a reusable fragment of SQL code that can be included in other
statements. It can be statically (during load phase) parametrized. Different property values can vary in
include instances. For example:

<sql id="user Col ums" > ${alias}.id,${alias}.usernane,${alias}.pass%ord </ sql >

The SQL fragment can then be included in another statement, for example:

<sel ect id="sel ectUsers" resultType="map">
sel ect
<i nclude refid="user Col ums"><property nanme="alias" val ue="t 1"/ ></incl ude>,
<i ncl ude refid="user Col ums"><property nane="al i as" val ue="t 2"/ ></incl ude>
fromsone table t1
cross join some_table t2
</ sel ect >

Property value can be also used in include refid attribute or property valuesinside include clause, for
example:

©2022, MyBatis.org « ALL RIGHTS RESERVED.

4 Mapper XML Files 38

<sgl id="sonetable">
${prefix}Table
</ sql >

<sqgl id="sonei nclude">
from
<include refid="${include_target}"/>
</ sql >

<sel ect id="select" resultType="nmap">
sel ect
fieldl, field2, field3
<i nclude refid="sonei ncl ude">
<property nane="prefix" val ue="Sone"/>
<property nane="incl ude_target" val ue="sonetabl e"/>
</incl ude>
</ sel ect >

4.1.4 Parameters

In al of the past statements, you've seen examples of simple parameters. Parameters are very
powerful elementsin MyBatis. For smple situations, probably 90% of the cases, there's not much to
them, for example:

<sel ect id="sel ectUsers" resultType="User">
select id, usernane, password
from users
where id = #{id}

</ sel ect >

The example above demonstrates a very simple named parameter mapping. The parameterType
issettoi nt, so therefore the parameter could be named anything. Primitive or ssmple data types
such asl nt eger and St ri ng have no relevant properties, and thus will replace the full value of the
parameter entirely. However, if you passin a complex object, then the behavior is alittle different.
For example:

<insert id="insertUser" paraneterType="User">
insert into users (id, usernanme, password)
val ues (#{id}, #{usernane}, #{password})
</insert>

If a parameter object of type User was passed into that statement, the id, username and password
property would be looked up and their values passed to a Pr epar edSt at enent parameter.

That's nice and simple for passing parameters into statements. But there are alot of other features of
parameter maps.

First, like other parts of MyBatis, parameters can specify a more specific data type.

#{ property,javaType=int, j dbcType=NUMERI C}

Like therest of MyBaitis, the javaType can amost always be determined from the parameter object,
unless that object isaHashMap. Then thej avaType should be specified to ensure the correct
TypeHand! er isused.

©2022, MyBatis.org « ALL RIGHTS RESERVED.

4 Mapper XML Files 39

NOTE The JDBC Typeisrequired by JDBC for al nullable columns, if nul | is
passed as avalue. You can investigate this yourself by reading the JavaDocs for the
Pr epar edSt at ement . set Nul | () method.

To further customize type handling, you can also specify a specific TypeHand! er class (or aias), for
example:

#{ age, j avaType=i nt, j dbcType=NUMERI C, t ypeHandl er =MyTypeHandI er } ‘

So aready it seems to be getting verbose, but the truth is that you'll rarely set any of these.

For numeric typesthere'salso anuneri cScal e for determining how many decimal places are
relevant.

‘#{ hei ght , j avaType=doubl e, j dbcType=NUMERI C, numer i cScal e=2}

Finally, the mode attribute allows you to specify | N, OUT or | NOUT parameters. If a parameter is OUT
or | NOUT, the actual value of the parameter object property will be changed, just as you would expect
if you were calling for an output parameter. If the node=0UT (or | NOUT) and thej dbc Type=CURSOR
(i.e. Oracle REFCURSOR), you must specify ar esul t Map to map the Resul t Set to the type

of the parameter. Note that thej avaType attribute is optional here, it will be automatically set to
Resul t Set if left blank with a CURSOR asthej dbcType.

‘#{ department, node=0UT, jdbcType=CURSOR, javaType=ResultSet, resultMap=departnentRe

MyBatis also supports more advanced data types such as structs, but you must tell the statement
the type name when registering the out parameter. For example (again, don't break lineslikethisin
practice):

‘#{ m ddl el nitial, npde=QUT, jdbcType=STRUCT, jdbcTypeNane=MY_TYPE, ﬂesul t Map=departn

Despite all of these powerful options, most of the time you'll ssimply specify the property name, and
MyBatis will figure out the rest. At most, you'll specify thej dbcType for nullable columns.

#{first Nane}
#{m ddl elnitial,jdbcType=VARCHAR}
#{ | ast Nane}

4.1.4.1 String Substitution

By default, using the #{} syntax will cause MyBatisto generate Pr epar edSt at enent properties
and set the values safely against the Pr epar edSt at enent parameters (e.g. 7). While thisis safer,
faster and almost always preferred, sometimes you just want to directly inject an unmodified string
into the SQL Statement. For example, for ORDER BY, you might use something like this:

‘(RDER BY ${col urmNare} \

Here MyBatis won't modify or escape the string.

String Substitution can be very useful when the metadata(i.e. table name or column name) in the sl
statement is dynamic, for example, if you want to sel ect from atable by any one of its columns,
instead of writing code like:

©2022, MyBatis.org « ALL RIGHTS RESERVED.

4 Mapper XML Files 40

@el ect ("select * fromuser where id = #{id}")
User findByld(@aram"id") long id);

@bel ect ("sel ect * from user where nane = #{nane}")
User findByNanme(@aran("nane") String name);

@el ect ("select * fromuser where email = #{email}")
User findByEmail (@aranm("email") String email);

/1 and nmore "findByXxx" method

you can just write:

@el ect ("sel ect * fromuser where ${colum} = #{value}")
User findByCol um(@aran("colum") String colum, @paran{("value") $tring val ue);

inwhich the ${ col um} will be substituted directly and the #{ val ue} will be "prepared". Thusyou
can just do the same work by:

User userOfldl = user Mapper. findByCol um("id", 1L);
User user O NaneKi d = user Mapper. fi ndByCol um("nanme", "kid");
User userOf Email = user Mapper.findByCol um("enmil", "noone@owhere. con');

This idea can be applied to substitute the table name as well.

NOTE It's not safe to accept input from a user and supply it to a statement unmodified in thisway.
Thisleads to potential SQL Injection attacks and therefore you should either disallow user input in
these fields, or always perform your own escapes and checks.

4.1.5 Result Maps

Ther esul t Map element isthe most important and powerful element in MyBatis. It's what alows
you to do away with 90% of the code that JDBC requiresto retrieve datafrom Resul t Set s, and in
some cases alows you to do things that JDBC does not even support. In fact, to write the equival ent
code for something like ajoin mapping for a complex statement could probably span thousands of
lines of code. The design of the Resul t Mapsis such that simple statements don't require explicit
result mappings at al, and more complex statements require no more than is absolutely necessary to
describe the relationships.

Y ou've aready seen examples of simple mapped statements that don't have an explicit r esul t Map.
For example:

<sel ect id="sel ectUsers" resultType="nap">
sel ect id, username, hashedPassword
fromsone_table
where id = #{id}

</sel ect >

©2022, MyBatis.org « ALL RIGHTS RESERVED.

4 Mapper XML Files 41

Such a statement simply resultsin al columns being automatically mapped to the keys of a HashMap,
as specified by ther esul t Type attribute. While useful in many cases, a HashMap doesn't make a
very good domain model. It's more likely that your application will use JavaBeans or POJOs (Plain
Old Java Objects) for the domain model. MyBatis supports both. Consider the following JavaBean:

package com somneapp. nodel

public class User {
private int id;
private String usernamne
private String hashedPasswor d;

public int getld() {

return id;

}

public void setld(int id) {
this.id =id;

}

public String getUsernane() ({
return usernane;

}

public void setUsername(String usernane) {
t hi s. usernane = usernang;

}

public String getHashedPassword() ({
return hashedPassword;

}

public void set HashedPassword(String hashedPassword) {
t hi s. hashedPassword = hashedPasswor d;

}

}

Based on the JavaBeans specification, the above class has 3 properties: id, username, and
hashedPassword. These match up exactly with the column namesin the select statement.

Such a JavaBean could be mapped to aResul t Set just as easily as the HashMap.

<sel ect id="sel ectUsers" resultType="com soneapp. nodel . User" >
sel ect id, username, hashedPassword
fromsonme_table
where id = #{id}

</ sel ect >

And remember that TypeAliases are your friends. Use them so that you don't have to keep typing the
fully qualified path of your class out. For example:

<l-- In Config XM file -->
<typeAlias type="com soneapp. nodel . User" alias="User"/>

<l-- In SQ Mapping XM file -->

<sel ect id="sel ectUsers" resultType="User">
select id, usernane, hashedPassword
fromsonme_table
where id = #{id}

</ sel ect >

©2022, MyBatis.org « ALL RIGHTS RESERVED.

4 Mapper XML Files 42

In these cases MyBatisis automatically creating a Resul t Map behind the scenes to auto-map the
columns to the JavaBean properties based on name. If the column names did not match exactly, you
could employ select clause dliases (astandard SQL feature) on the column names to make the labels
match. For example:

<sel ect id="sel ectUsers" resultType="User">

sel ect
user _id as "id",
user _nane as "user Nane"
hashed_passwor d as "hashedPassword"

fromsone_table
where id = #{id}
</ sel ect >

The great thing about Resul t Mapsisthat you've already learned alot about them, but you haven't
even seen one yet! These simple cases don't require any more than you've seen here. Just for example
sake, let's see what this last example would ook like as an external r esul t Map, asthat is another
way to solve column name mismatches.

<resul t Map id="userResul t Map" type="User">
<id property="id" colum="user_id" />
<result property="usernane" col um="user_nane"/>
<result property="password" col um="hashed_password"/>
</resul t Map>

And the statement that referencesit usesther esul t Map attribute to do so (notice we removed the
resul t Type attribute). For example:

<sel ect id="sel ectUsers" resultMap="userResul t Map" >
sel ect user_id, user_name, hashed_password
fromsone_table
where id = #{id}

</ sel ect >

Now if only the world was aways that simple.

4.1.5.1 Advanced Result Maps

MyBatis was created with one idea in mind; Databases aren't always what you want or need them to
be. While we'd love every database to be perfect 3rd normal form or BCNF, they aren't. And it would
be great if it was possible to have a single database map perfectly to al of the applications that useit,
it's not. Result Maps are the answer that MyBatis provides to this problem.

For example, how would we map this statement?

©2022, MyBatis.org « ALL RIGHTS RESERVED.

4 Mapper XML Files 43

<l-- Very Conpl ex Statement -->

<sel ect id="sel ectBl ogDetails" resultMp="detail edBl ogResul t Map" >
sel ect

.id as blog_id,

.title as blog_ title,

.aut hor _id as bl og_author _id,

idas author _id,

username as aut hor_user nane,

password as aut hor _password,

enai |l as aut hor_ensi |

bi o as aut hor _bi o,

.favourite_section as author_favourite_section

id as post_id,

bl og_id as post_blog_id,

aut hor _id as post_aut hor_id,

created_on as post_created_on,

section as post_section,

. Subj ect as post_subject,

draft as draft,

body as post_body,

id as coment _id,

post _id as comment _post_id,

name as comment _nane,

. coment as conment _t ext,

HHO00OO VUV IVITVISP> > P> UND

idas tag_id,
. hanme as tag_name
fromBlog B

left outer join Author A on B.author_id = Aid
left outer join Post Pon B.id = P.blog_id
left outer join Conment C on P.id = C post_id
left outer join Post_Tag PT on PT.post_id = P.id
left outer join Tag T on PT.tag_id = T.id
where B.id = #{id}
</ sel ect >

Y ou'd probably want to map it to an intelligent object model consisting of a Blog that was written
by an Author, and has many Posts, each of which may have zero or many Comments and Tags. The
following is a complete example of acomplex ResultMap (assume Author, Blog, Post, Comments
and Tags are al type aliases). Have alook at it, but don't worry, we're going to go through each step.
Whileit may look daunting at first, it's actually very simple.

©2022, MyBatis.org « ALL RIGHTS RESERVED.

4 Mapper XML Files 44

<l-- Very Conplex Result Map -->
<resul t Map i d="det ai | edBl ogResul t Map" type="Bl og" >
<constructor>
<i dArg col um="bl og_i d" javaType="int"/>
</ constructor>
<result property="title" colum="blog title"/>
<associ ati on property="author" javaType="Author">
<id property="id" col um="author_id"/>
<result property="usernanme" col um="aut hor _user nane"/>
<result property="password” col um="aut hor _password"/>
<result property="email" col um="author_emil"/>
<result property="bio" col um="aut hor_bio"/>
<result property="favouriteSection” col um="author_favourite_section"/>
</ associ ati on>
<col | ecti on property="posts" of Type="Post">
<id property="id" col um="post_id"/>
<result property="subject" col um="post_subject"/>
<associ ation property="author" javaType="Author"/>
<col | ection property="coments" of Type="Coment ">
<id property="id" colum="comment _id"/>
</ col | ecti on>
<col | ection property="tags" of Type="Tag" >
<id property="id" colum="tag id"/>
</ col | ecti on>
<di scrim nator javaType="int" colum="draft">
<case val ue="1" resultType="DraftPost"/>
</ di scri m nat or >
</ col | ecti on>
</resul t Map>

Ther esul t Map element has a number of sub-elements and a structure worthy of some discussion.
Thefollowing is a conceptual view of ther esul t Map element.

4.1.5.2 resultMap
e construct or - used for injecting resultsinto the constructor of a class upon instantiation

e i dAr g - ID argument; flagging results as ID will help improve overall performance
e arg - anormal result injected into the constructor

e id—anlD result; flagging results as ID will help improve overall performance

* result —anormal result injected into afield or JavaBean property

* associ at i on —acomplex type association; many results will roll up into thistype

» nested result mappings — associations are r esul t Maps themselves, or can refer to one
» col | ecti on —acollection of complex types

» nested result mappings — collections arer esul t Maps themselves, or can refer to one
e di scrim nat or —usesaresult value to determine whichr esul t Map to use

e case —acaseisaresult map based on some value

 nested result mappings— acase is also aresult map itself, and thus can contain many of
these same elements, or it can refer to an external resultMap.

©2022, MyBatis.org « ALL RIGHTS RESERVED.

4 Mapper XML Files 45

id A unique identifier in this namespace that can be used
to reference this result map.

type A fully qualified Java class name, or a type alias (see
the table above for the list of built-in type aliases).

aut oMappi ng If present, MyBatis will enable or disable the
automapping for this ResultMap. This attribute
overrides the global autoMappingBehavior. Default:
unset.

ResultMap Attributes

Best Practice Always build ResultMaps incrementally. Unit tests really help out here. If you try to
build agigantic r esul t Map like the one above al at once, it'slikely you'll get it wrong and it will be
hard to work with. Start simple, and evolveit astep at atime. And unit test! The downside to using
frameworksisthat they are sometimes a bit of a black box (open source or not). Y our best bet to
ensure that you're achieving the behaviour that you intend, is to write unit tests. It also helps to have
them when submitting bugs.

The next sections will walk through each of the elements in more detail.

4.1.5.3id & result

<id property="id" colum="post _id"/>
<result property="subject" colum="post_ subject"/>

These are the most basic of result mappings. Both id and result map a single column value to asingle
property or field of asimple datatype (String, int, double, Date, etc.).

The only difference between the two isthat id will flag the result as an identifier property to be
used when comparing object instances. This helpsto improve genera performance, but especially
performance of caching and nested result mapping (i.e. join mapping).

Each has a number of attributes:

property The field or property to map the column result to. If
a matching JavaBeans property exists for the given
name, then that will be used. Otherwise, MyBatis will
look for a field of the given name. In both cases you
can use complex property navigation using the usual
dot notation. For example, you can map to something
simple like: user nane, or to something more
complicated like: addr ess. street . nunber.

col um The column name from the database, or
the aliased column label. This is the same
string that would normally be passed to
resul t Set. get Stri ng(col utmNane) .

©2022, MyBatis.org « ALL RIGHTS RESERVED.

4 Mapper XML Files 46

j avaType A fully qualified Java class name, or a type alias (see
the table above for the list of built-in type aliases).
MyBatis can usually figure out the type if you're
mapping to a JavaBean. However, if you are mapping
to a HashMap, then you should specify the javaType
explicitly to ensure the desired behaviour.

j dbcType The JDBC Type from the list of supported types that
follows this table. The JDBC type is only required for
nullable columns upon insert, update or delete. This
is a JDBC requirement, not a MyBatis one. So even if
you were coding JDBC directly, you'd need to specify
this type — but only for nullable values.

t ypeHandl er We discussed default type handlers previously in this
documentation. Using this property you can override
the default type handler on a mapping-by-mapping
basis. The value is either a fully qualified class hame
of a TypeHandler implementation, or a type alias.

Id and Result Attributes

4.1.5.4 Supported JDBC Types

For future reference, MyBatis supports the following JDBC Types via the included JdbcType
enumeration.

BIT FLOAT CHAR TI MESTAMP OTHER UNDEFI NED
TI NYI NT REAL VARCHAR Bl NARY BLOB NVARCHAR
SMALLI NT DCOUBLE LONGVARCHAR VARBI NARY CLOB NCHAR

I NTEGER NUMERI C DATE LONGVARBI NAR BOOLEAN NCLOB

Bl G NT DECI MAL TI ME NULL CURSOR ARRAY

4.1.5.5 constructor

While properties will work for most Data Transfer Object (DTO) type classes, and likely most of
your domain model, there may be some cases where you want to use immutable classes. Often tables
that contain reference or lookup datathat rarely or never changesis suited to immutable classes.
Constructor injection allows you to set values on a class upon instantiation, without exposing public
methods. MyBatis also supports private properties and private JavaBeans properties to achieve this,
but some people prefer Constructor injection. The constructor element enables this.

Consider the following constructor:

public class User {
/...
public User(Integer id, String username, int age) {
/...

©2022, MyBatis.org « ALL RIGHTS RESERVED.

4 Mapper XML Files 47

In order to inject the results into the constructor, MyBatis needs to identify the constructor for
somehow. In the following example, MyBatis searches a constructor declared with three parameters:
java.lang. I nteger,java.lang. Stringandint inthisorder.

<constructor >
<i dArg colum="id" javaType="int"/>
<arg col um="username" javaType="String"/>
<arg col um="age" javaType="_int"/>

</ constructor>

When you are dealing with a constructor with many parameters, maintaining the order of arg elements
is error-prone.

Since 3.4.3, by specifying the name of each parameter, you can write arg elementsin any order. To
reference constructor parameters by their names, you can either add @ar amannotation to them

or compile the project with -parameters' compiler option and enable useAct ual Par amNare (this
option is enabled by default). The following example is valid for the same constructor even though the
order of the second and the third parameters does not match with the declared order.

<construct or>

<i dArg colum="id" javaType="int" name="id" />

<arg colum="age" javaType="_int" nane="age" />

<arg col um="usernanme" javaType="String" nane="usernanme" />
</ constructor>

j avaType can be omitted if there is a property with the same name and type.
The rest of the attributes and rules are the same as for the regular id and result elements.

col umm The column name from the database, or
the aliased column label. This is the same
string that would normally be passed to
resul t Set. get Stri ng(col umNane) .

j avaType A fully qualified Java class name, or a type alias (see
the table above for the list of built-in type aliases).
MyBatis can usually figure out the type if you're
mapping to a JavaBean. However, if you are mapping
to a HashMap, then you should specify the javaType
explicitly to ensure the desired behaviour.

j dbcType The JDBC Type from the list of supported types that
follows this table. The JDBC type is only required for
nullable columns upon insert, update or delete. This is
a JDBC requirement, not an MyBatis one. So even if
you were coding JDBC directly, you'd need to specify
this type — but only for nullable values.

t ypeHandl er We discussed default type handlers previously in this
documentation. Using this property you can override
the default type handler on a mapping-by-mapping
basis. The value is either a fully qualified class hame
of a TypeHandl er implementation, or a type alias.

©2022, MyBatis.org « ALL RIGHTS RESERVED.

4 Mapper XML Files 48

sel ect The ID of another mapped statement that will load the
complex type required by this property mapping. The
values retrieved from columns specified in the column
attribute will be passed to the target select statement
as parameters. See the Association element for more.

resul t Map This is the ID of a ResultMap that can map the
nested results of this argument into an appropriate
object graph. This is an alternative to using a call to
another select statement. It allows you to join multiple
tables together into a single Resul t Set . Such a
Resul t Set will contain duplicated, repeating groups
of data that needs to be decomposed and mapped
properly to a nested object graph. To facilitate this,
MyBatis lets you "chain" result maps together, to deal
with the nested results. See the Association element
below for more.

name The name of the constructor parameter. Specifying
name allows you to write arg elements in any order.
See the above explanation. Since 3.4.3.

4.1.5.6 association

<associ ation property="author" javaType="Aut hor">

<id property="id" colum="author_id"/>

<result property="usernanme" col um="aut hor usernane"/>
</ associ ati on>

The association element deals with a "has-one" type relationship. For example, in our example, a
Blog has one Author. An association mapping works mostly like any other result. Y ou specify the
target property, thej avaType of the property (which MyBatis can figure out most of the time), the
jdbcType if necessary and atypeHandler if you want to override the retrieval of the result values.

Where the association differsis that you need to tell MyBatis how to load the association. MyBatis
can do so in two different ways:

» Nested Select: By executing another mapped SQL statement that returns the complex type
desired.

» Nested Results: By using nested result mappings to deal with repeating subsets of joined results.

First, let's examine the properties of the element. Asyou'll see, it differs from anormal result mapping
only by the select and resultMap attributes.

property The field or property to map the column result to. If
a matching JavaBeans property exists for the given
name, then that will be used. Otherwise, MyBatis will
look for a field of the given name. In both cases you
can use complex property navigation using the usual
dot notation. For example, you can map to something
simple like: user nane, or to something more
complicated like: addr ess. st reet . nunber.

©2022, MyBatis.org « ALL RIGHTS RESERVED.

4 Mapper XML Files

j avaType

j dbcType

t ypeHand! er

4.1.5.7 Nested Select for Association

col um

sel ect

fetchType

For example:

©2022, MyBatis.org « ALL RIGHTS RESERVED.

49

A fully qualified Java class name, or a type alias (see
the table above for the list of built- in type aliases).
MyBatis can usually figure out the type if you're
mapping to a JavaBean. However, if you are mapping
to a HashMap, then you should specify the javaType
explicitly to ensure the desired behaviour.

The JDBC Type from the list of supported types that
follows this table. The JDBC type is only required for
nullable columns upon insert, update or delete. This is
a JDBC requirement, not an MyBatis one. So even if
you were coding JDBC directly, you'd need to specify
this type — but only for nullable values.

We discussed default type handlers previously in this
documentation. Using this property you can override
the default type handler on a mapping-by-mapping
basis. The value is either a fully qualified class hame
of a TypeHandler implementation, or a type alias.

The column name from the database, or the aliased
column label that holds the value that will be passed
to the nested statement as an input parameter. This
is the same string that would normally be passed
toresul t Set. get Stri ng(col utmNane) .
Note: To deal with composite keys, you can

specify multiple column names to pass to the
nested select statement by using the syntax

col um="{propl=col 1, prop2=col 2}".
This will cause pr opl and pr op2 to be set against
the parameter object for the target nested select
statement.

The ID of another mapped statement that will load
the complex type required by this property mapping.
The values retrieved from columns specified in

the column attribute will be passed to the target
select statement as parameters. A detailed example
follows this table. Note: To deal with composite keys,
you can specify multiple column names to pass to
the nested select statement by using the syntax

col um="{propl=col 1, prop2=col 2}".
This will cause pr opl and pr op2 to be set against
the parameter object for the target nested select
statement.

Optional. Valid values are | azy and eager . If
present, it supersedes the global configuration
parameter | azyLoadi ngEnabl ed for this
mapping.

4 Mapper XML Files 5

<resul t Map id="bl ogResult" type="Bl og">
<associ ation property="author" col um="author_id" javaType="Author
</resul t Map>

<sel ect id="sel ectBl og" resultMp="bl ogResult">
SELECT * FROM BLOG WHERE | D = #{i d}
</ sel ect >

<sel ect id="sel ect Author" resultType="Aut hor">
SELECT * FROM AUTHOR WHERE | D = #{i d}
</ sel ect >

That'sit. We have two select statements: one to load the Blog, the other to load the Author, and
the Blog's resultM ap describes that the sel ect Aut hor statement should be used to load its author

property.
All other properties will be loaded automatically assuming their column and property names match.

While this approach is simple, it will not perform well for large data sets or lists. This problem is
known asthe "N+1 Selects Problem™. In anutshell, the N+1 selects problem is caused like this:

» You execute asingle SQL statement to retrieve alist of records (the "+1").
 For each record returned, you execute a select statement to load details for each (the "N").

This problem could result in hundreds or thousands of SQL statements to be executed. Thisis not
aways desirable.

The upsideisthat MyBatis can lazy load such queries, thus you might be spared the cost of these
statements all at once. However, if you load such alist and then immediately iterate through it to
access the nested data, you will invoke all of the lazy loads, and thus performance could be very bad.

And so, there is another way.

4.1.5.8 Nested Results for Association

resul t Map This is the ID of a ResultMap that can map the nested
results of this association into an appropriate object
graph. This is an alternative to using a call to another
select statement. It allows you to join multiple tables
together into a single ResultSet. Such a ResultSet
will contain duplicated, repeating groups of data that
needs to be decomposed and mapped properly to a
nested object graph. To facilitate this, MyBatis lets you
"chain" result maps together, to deal with the nested
results. An example will be far easier to follow, and
one follows this table.

col umpPr efi x When joining multiple tables, you would have to use
column alias to avoid duplicated column names in the
ResultSet. Specifying columnPrefix allows you to map
such columns to an external resultMap. Please see
the example explained later in this section.

©2022, MyBatis.org « ALL RIGHTS RESERVED.

0

sel ect ="sel ec

4 Mapper XML Files

not Nul | Col unm By default a child object is created only if at least one
of the columns mapped to the child's properties is non
null. With this attribute you can change this behaviour
by specifiying which columns must have a value so
MyBatis will create a child object only if any of those
columns is not null. Multiple column names can be
specified using a comma as a separator. Default

value: unset.

aut oMappi ng If present, MyBatis will enable or disable automapping
when mapping the result to this property. This attribute
overrides the global autoMappingBehavior. Note
that it has no effect on an external resultMap, so it
is pointless to use it with sel ect orresul t Map

attribute. Default value: unset.

Y ou've aready seen avery complicated example of nested associations above. The following isafar
simpler example to demonstrate how this works. Instead of executing a separate statement, we'll join

the Blog and Author tables together, like so:

<sel ect id="sel ectBl og" resultMp="bl ogResult">
sel ect
B.id as blog_id,
B.title as blog title,
B. author __id as bl og_author _id,
Aid as author _id,
A. user name as aut hor _user nane,
A. password as aut hor _password,
A emui | as aut hor_emil,
A bio as author_bio
fromBlog B left outer join Author A on B.author_id = Aid
where B.id = #{id}
</ sel ect >

Notice the join, aswell as the care taken to ensure that all results are aliased with a unique and clear

name. This makes mapping far easier. Now we can map the results:

<resul t Map id="bl ogResult" type="Bl og">

<id property="id" colum="blog id" />

<result property="title" colum="blog title"/>

<associ ation property="author" resultMp="authorResult" />
</resul t Map>

<resul t Map id="authorResult" type="Author">
<id property="id" colum="author_id"/>
<result property="username" col um="aut hor _usernane"/>
<result property="password" col um="aut hor password"/>
<result property="email" colum="author_enail"/>
<result property="bio" col um="aut hor_bio"/>

</resul t Map>

In the example above you can see at the Blog's "author” association delegates to the "authorResult"

resultMap to load the Author instance.

©2022, MyBatis.org « ALL RIGHTS RESERVED.

4 Mapper XML Files 52

Very Important: id elements play a very important role in Nested Result mapping. Y ou should
always specify one or more properties that can be used to uniquely identify the results. The truth
isthat MyBatiswill still work if you leave it out, but at a severe performance cost. Choose as few
properties as possible that can uniquely identify the result. The primary key is an obvious choice
(even if composite).

Now, the above example used an external resultMap element to map the association. This makes the
Author resultMap reusable. However, if you have no need to reuseiit, or if you simply prefer to co-
locate your result mappings into a single descriptive resultMap, you can nest the association result
mappings. Here's the same example using this approach:

<resul t Map i d="bl ogResult" type="Bl og">
<id property="id" colum="blog_id" />
<result property="title" colum="blog_title"/>
<associ ati on property="author" javaType="Author">
<id property="id" colum="author_id"/>
<result property="usernanme" col um="aut hor _usernane"/>
<result property="password" col um="aut hor _password"/>
<result property="email" col um="author_enmail"/>
<result property="bio" col um="aut hor_bio"/>
</ associ ati on>
</resul t Map>

What if the blog has a co-author? The select statement would look like:

<sel ect id="sel ectBl og" resultMp="bl ogResult">
sel ect
B.id as blog_id,
B.title as blog_ title,
Aid as author _id,
A. user name as aut hor _user nane,
A. passwor d as aut hor _password,
A emai | as aut hor_enai |,
A bio as aut hor _bi o,
CAid as co_aut hor _id,
CA. user nanme as co_aut hor _user nane,
CA. password as co_aut hor _password,
CA emi | as co_aut hor_enai |
CA bio as co_author_bio
fromBlog B
left outer join Author A on B.author_id = Aid
left outer join Author CA on B.co_author_id = CAid
where B.id = #{id}
</ sel ect >

Recall that the resultMap for Author is defined as follows.

<resul t Map id="authorResult" type="Author">
<id property="id" col um="aut hor_id"/>
<result property="usernanme" col um="aut hor _user nane"/>
<result property="password" col um="aut hor _password"/>
<result property="email" col um="author_emil"/>
<result property="bio" col um="aut hor_bio"/>

</resul t Map>

©2022, MyBatis.org « ALL RIGHTS RESERVED.

4 Mapper XML Files

53

Because the column names in the results differ from the columns defined in the resultMap, you need

to specify col unmPr ef i x to reuse the resultMap for mapping co-author results.

<resul t Map i d="bl ogResult" type="Bl og">
<id property="id" colum="blog_id" />
<result property="title" colum="blog_title"/>
<associ ation property="author"
resul t Map="aut hor Resul t" />
<associ ati on property="coAut hor"
resul t Map="aut hor Resul t"
col umPrefix="co " />
</resul t Map>

4.1.5.9 Multiple ResultSets for Association

col umm

forei gnCol um

resul t Set

When using multiple resultset this attribute specifies
the columns (separated by commas) that will be
correlated with the f or ei gnCol umm to identify the
parent and the child of a relationship.

Identifies the name of the columns that contains the
foreign keys which values will be matched against
the values of the columns specified in the col unm
attibute of the parent type.

Identifies the name of the result set where this

complex type will be loaded from.

Starting from version 3.2.3 MyBatis provides yet another way to solve the N+1 problem.

Some databases allow stored procedures to return more than one resultset or execute more than one
statement at once and return a resultset per each one. This can be used to hit the database just once

and return related data without using ajoin.

In the example, the stored procedure executes the following queries and returns two result sets. The

first will contain Blogs and the second Authors.

SELECT * FROM BLOG WHERE | D = #{i d}

SELECT * FROM AUTHOR WHERE | D = #{i d}

A name must be given to each result set by adding ar esul t Set s attribute to the mapped statement

with alist of names separated by commas.

{cal | get Bl ogsAndAut hor s(#{i d, j dbcType=I NTEGER, node=I N}) }
</ sel ect >

<sel ect id="sel ectBl og" resultSets="bl ogs, aut hors" resultMap="Dbl ogh

Resul t"

Now we can specify that the datato fill the "author" association comesin the "authors' result set:

©2022, MyBatis.org « ALL RIGHTS RESERVED.

st at enent

4 Mapper XML Files 54

<resul t Map id="bl ogResult" type="Bl og">
<id property="id" colum="id" />
<result property="title" colum="title"/>

<id property="id" colum="id"/>
<result property="usernanme" col um="user nane"/>
<result property="password” col um="password"/>
<result property="email" colum="emil"/>
<result property="bio" col um="bio"/>
</ associ ati on>
</resul t Map>

Y ou've seen above how to deal with a"has one" type association. But what about "has many"? That's
the subject of the next section.

4.1.5.10 collection

<col | ection property="posts" of Type="donai n. bl og. Post ">
<id property="id" colum="post_id"/>
<result property="subject" col um="post_subject"/>
<result property="body" colum="post_ body"/>

</ col |l ecti on>

The collection element works almost identically to the association. In fact, it's so similar, to document
the similarities would be redundant. So let's focus on the differences.

To continue with our example above, a Blog only had one Author. But a Blog has many Posts. On the
blog class, this would be represented by something like:

private List<Post> posts;

To map a set of nested resultsto a List like this, we use the collection element. Just like the
association element, we can use a nested select, or nested results from ajoin.

4.1.5.11 Nested Select for Collection
First, let'slook at using a nested select to load the Posts for the Blog.

<resul t Map i d="bl ogResult" type="Bl og">
</resul t Map>

<sel ect id="sel ectBl og" resultMp="bl ogResult">
SELECT * FROM BLOG WHERE | D = #{i d}
</ sel ect >

<sel ect id="sel ect PostsForBl og" resultType="Post">
SELECT * FROM POST WHERE BLOG I D = #{i d}
</ sel ect >

There are a number things you'll notice immediately, but for the most part it looks very similar to
the association element we |learned about above. First, you'll notice that we're using the collection
element. Then you'll notice that there's anew "of Type" attribute. This attribute is necessary to

©2022, MyBatis.org « ALL RIGHTS RESERVED.

<col l ecti on property="posts" javaType="ArrayList" colum="id" of Type="Post"

<associ ation property="author" javaType="Author" resultSet="authors" colum="auth

sel ec

4 Mapper XML Files 55

distinguish between the JavaBean (or field) property type and the type that the collection contains. So
you could read the following mapping like this:

<col l ecti on property="posts" javaType="ArrayList" colum="id" of Ty#)e:" Post" sel ect=

Read as: "A collection of postsin an ArrayList of type Post."

Thej avaType attribute is really unnecessary, as MyBatis will figure this out for you in most cases.
So you can often shorten this down to simply:

<col | ection property="posts" colum="id" of Type="Post" select:"sel#ctPostsForBlog"/

4.1.5.12 Nested Results for Collection

By this point, you can probably guess how nested results for a collection will work, becauseit's
exactly the same as an association, but with the same addition of the of Type attribute applied.

Firgt, let'slook at the SQL:

<sel ect id="sel ectBl og" resultMp="bl ogResult">
sel ect
B.id as blog id,
B.title as blog title,
B. author _id as blog_author_id,
P.id as post _id,
P. subj ect as post_subj ect,
P. body as post_body,
fromBlog B
left outer join Post Pon B.id = P.blog_id
where B.id = #{id}
</ sel ect >

Again, we've joined the Blog and Post tables, and have taken care to ensure quality result column
labels for simple mapping. Now mapping a Blog with its collection of Post mappingsis as simple as:

<resul t Map i d="bl ogResult" type="Bl og">
<id property="id" colum="blog_id" />
<result property="title" colum="blog title"/>
<col | ection property="posts" of Type="Post">
<id property="id" colum="post_id"/>
<result property="subject" col um="post_subject"/>
<result property="body" colum="post_body"/>
</ col |l ecti on>
</resul t Map>

Again, remember the importance of the id elements here, or read the association section above if you
haven't already.

Also, if you prefer the longer form that allows for more reusability of your result maps, you can use
the following alternative mapping:

©2022, MyBatis.org « ALL RIGHTS RESERVED.

4 Mapper XML Files

<resul t Map id="bl ogResult" type="Bl og">
<id property="id" colum="blog_id" />
<result property="title" colum="blog title"/>

</resul t Map>

<resul t Map id="bl ogPost Result" type="Post">
<id property="id" colum="id"/>
<result property="subject" col um="subject"/>
<result property="body" col um="body"/>
</resul t Map>

<col |l ecti on property="posts" of Type="Post" resultMp="bl ogPost Res

4.1.5.13 Multiple ResultSets for Collection

56

ult" col umPrefi

Aswe did for the association, we can call astored procedure that executes two queries and returns

two result sets, one with Blogs and another with Posts:

SELECT * FROM BLOG WHERE |1 D = #{i d}

SELECT * FROM POST WHERE BLOG | D = #{i d}

A name must be given to each result set by adding ar esul t Set s attribute to the mapped statement

with alist of names separated by commas.

{cal | get Bl ogsAndPost s(#{i d, j dbcType=I NTEGER, node=I N}) }
</ sel ect >

<sel ect id="sel ectBlog" resultSets="bl ogs, posts" resultMp="bl ogRes

We specify that the "posts’ collection will be filled out of data contained in the result set named

"posts’:

ul t">

<resul t Map id="bl ogResult" type="Bl og">
<id property="id" colum="id" />
<result property="title" colum="title"/>

<id property="id" colum="id"/>
<result property="subject" col um="subject"/>
<result property="body" col um="body"/>
</ col |l ecti on>
</resul t Map>

<col | ection property="posts" of Type="Post" resultSet="posts" coll

im="i d" foreignC

NOTE There's no limit to the depth, breadth or combinations of the associations and collections that
you map. Y ou should keep performance in mind when mapping them. Unit testing and performance
testing of your application goes along way toward discovering the best approach for your application.
The nice thing is that MyBatis lets you change your mind later, with very little (if any) impact to your

code.

Advanced association and collection mapping is a deep subject. Documentation can only get you so

far. With alittle practice, it will al become clear very quickly.

©2022, MyBatis.org « ALL RIGHTS RESERVED.

4 Mapper XML Files 57

4.1.5.14 discriminator

<di scrimnator javaType="int" colum="draft">
<case val ue="1" resultType="DraftPost"/>
</ di scri m nat or >

Sometimes a single database query might return result sets of many different (but hopefully somewhat
related) data types. The discriminator element was designed to deal with this situation, and others,
including class inheritance hierarchies. The discriminator is pretty simple to understand, asit behaves
much like a switch statement in Java.

A discriminator definition specifies column and javaType attributes. The column is where MyBatis
will look for the value to compare. The javaTypeis required to ensure the proper kind of equality test
is performed (although String would probably work for almost any situation). For example:

<resul t Map id="vehicl eResult" type="Vehicle">
<id property="id" colum="id" />
<result property="vin" colum="vin"/>
<result property="year" colum="year"/>
<result property="make" col um="make"/>
<result property="nodel" col um="nodel"/>
<result property="color" colum="col or"/>
<di scrim nator javaType="int" col um="vehicle_type">
<case val ue="1" resultMap="carResult"/>
<case val ue="2" resultMap="truckResult"/>
<case val ue="3" resultMap="vanResult"/>
<case val ue="4" result Map="suvResul t"/>
</ di scri m nat or >
</resul t Map>

In this example, MyBatis would retrieve each record from the result set and compare its vehicle type
value. If it matches any of the discriminator cases, then it will usether esul t Map specified by the
case. Thisisdone exclusively, so in other words, the rest of the resultMap isignored (unlessit is
extended, which we talk about in a second). If none of the cases match, then MyBatis simply uses the
resultM ap as defined outside of the discriminator block. So, if the carResult was declared as follows:

<resultMap id="carResult" type="Car">
<result property="doorCount"” col um="door_count" />
</resul t Map>

Then ONLY the doorCount property would be loaded. Thisis done to allow completely independent
groups of discriminator cases, even ones that have no relationship to the parent resultMap. In this
case we do of course know that there's a relationship between cars and vehicles, asa Car is-aVehicle.
Therefore, we want the rest of the properties loaded too. One simple change to the resultMap and
we're set to go.

<resultMap id="carResult" type="Car" extends="vehicl eResult">
<result property="doorCount” col um="door_count" />
</resul t Map>

Now all of the properties from both the vehicleResult and carResult will be loaded.

Once again though, some may find this external definition of maps somewhat tedious. Therefore
there's an alternative syntax for those that prefer a more concise mapping style. For example:

©2022, MyBatis.org « ALL RIGHTS RESERVED.

4 Mapper XML Files 58

<resul t Map id="vehicl eResult" type="Vehicle">
<id property="id" colum="id" />
<result property="vin" colum="vin"/>
<result property="year" colum="year"/>
<result property="make" col um="make"/>
<result property="nodel" col um="nodel "/ >
<result property="color" colum="col or"/>
<di scrim nator javaType="int" col um="vehicle_type">
<case val ue="1" resultType="carResult">
<result property="doorCount” col um="door_count" />
</ case>
<case val ue="2" resultType="truckResult">
<result property="boxSi ze" col um="box_size" />
<result property="extendedCab" col um="extended_cab" />
</ case>
<case val ue="3" resultType="vanResult">
<resul t property="power Slidi ngDoor" col um="power_sli di ng_dog
</ case>
<case val ue="4" resultType="suvResult">
<result property="allWeel Drive" colum="all _wheel _drive" />
</ case>
</ di scri m nat or >
</resul t Map>

1 / >

=

NOTE Remember that these are all Result Maps, and if you don't specify any results at all, then
MyBatis will automatically match up columns and properties for you. So most of these examples
are more verbose than they really need to be. That said, most databases are kind of complex and it's
unlikely that we'll be able to depend on that for all cases.

4.1.6 Auto-mapping

Asyou have already seen in the previous sections, in simple cases MyBatis can auto-map the results
for you and in others you will need to build aresult map. But as you will seein this section you can
also mix both strategies. Let's have a deeper ook at how auto-mapping works.

When auto-mapping results MyBatis will get the column name and look for a property with the same
name ignoring case. That meansthat if a column named ID and property named id are found, MyBatis
will set theid property with the ID column value.

Usually database columns are named using uppercase letters and underscores between words and java
properties often follow the camel case naming covention. To enable the auto-mapping between them
set the setting mapUnder scor eToCanel Case to true.

Auto-mapping works even when there is an specific result map. When this happens, for each result
map, all columns that are present in the ResultSet that have not a manual mapping will be auto-
mapped, then manual mappings will be processed. In the following sample id and userName columns
will be auto-mapped and hashed_password column will be mapped.

©2022, MyBatis.org « ALL RIGHTS RESERVED.

4 Mapper XML Files

<sel ect id="sel ectUsers" resultMap="userResul t Map" >

sel ect
user _id as "id",
user _nane as "user Nane",

hashed_passwor d
fromsone_table
where id = #{id}

</ sel ect >

<resul t Map id="user Resul t Map" type="User">

<result property="password" col um="hashed_ password"/>
</resul t Map>

There are three auto-mapping levels:

* NONE - disables auto-mapping. Only manually mapped properties will be set.

» PARTI AL - will auto-map results except those that have nested result mappings defined inside

(joins).
* FULL - auto-maps everything.

The default value is PARTI AL, and it is so for areason. When FULL is used auto-mapping will be

59

performed when processing join results and joins retrieve data of several different entitiesin the same
row hence this may result in undesired mappings. To understand the risk have alook at the following

sample:

<sel ect id="sel ectBl og" resultMap="bl ogResul t">
sel ect
B.id,
B.title,
A. user nane,
fromBlog B left outer join Author A on B.author _id = Aid
where B.id = #{id}
</ sel ect >

<resul t Map id="bl ogResult" type="Bl og">

<associ ation property="author" resultMp="authorResult"/>
</resul t Map>

<resul t Map id="authorResult" type="Author">

<result property="usernanme" col um="aut hor _usernane"/>
</resul t Map>

With this result map both Blog and Author will be auto-mapped. But note that Author has an id
property and there is a column named id in the ResultSet so Author'sid will be filled with Blog'sid,

and that is not what you were expecting. So use the FULL option with caution.

Regardless of the auto-mapping level configured you can enable or disable the automapping for an

specific ResultMap by adding the attribute aut oMappi ng toit:

<resul t Map id="userResul t Map" type="User" aut oMappi ng="fal se">
<result property="password" col um="hashed_password"/>
</resul t Map>

©2022, MyBatis.org « ALL RIGHTS RESERVED.

4 Mapper XML Files 60

4.1.7 cache

MyBatis includes a powerful transactional query caching feature which is very configurable and
customizable. A lot of changes have been made in the MyBatis 3 cache implementation to make it
both more powerful and far easier to configure.

By default, just local session caching is enabled that is used solely to cache datafor the duration of
asession. To enable aglobal second level of caching you simply need to add one line to your SQL

Mapping file:

<cache/ >

Literally that'sit. The effect of this one simple statement is asfollows:
+ All results from select statements in the mapped statement file will be cached.
 All insert, update and del ete statements in the mapped statement file will flush the cache.
» The cache will use a Least Recently Used (LRU) agorithm for eviction.
» The cache will not flush on any sort of time based schedule (i.e. no Flush Interval).
» The cache will store 1024 references to lists or objects (whatever the query method returns).

» The cache will be treated as a read/write cache, meaning objects retrieved are not shared and can
be safely modified by the caller, without interfering with other potential modifications by other
callersor threads.

NOTE The cache will only apply to statements declared in the mapping file where the cache tag is
located. If you are using the Java API in conjunction with the XML mapping files, then statements
declared in the companion interface will not be cached by default. Y ou will need to refer to the cache
region using the @CacheNamespaceRef annotation.

All of these properties are modifiabl e through the attributes of the cache element. For example:

<cache
evi cti on="FIl FO'
fl ushl nt erval =" 60000"
size="512"
readOnl y="true"/ >

This more advanced configuration creates a FIFO cache that flushes once every 60 seconds, stores
up to 512 references to result objects or lists, and objects returned are considered read-only, thus
modifying them could cause conflicts between callersin different threads.

The available eviction policies available are:

* LRU- Least Recently Used: Removes objects that haven't been used for the longst period of
time.
* FI FO—First In First Out: Removes objectsin the order that they entered the cache.

» SOFT — Soft Reference: Removes objects based on the garbage collector state and the rules of
Soft References.

* WEAK —Weak Reference: More aggressively removes objects based on the garbage collector state
and rules of Weak References.

The default is LRU.

The flushinterval can be set to any positive integer and should represent a reasonable amount of time
specified in milliseconds. The default is not set, thus no flush interval is used and the cacheis only
flushed by callsto statements.

The size can be set to any positive integer, keep in mind the size of the objects your caching and the
available memory resources of your environment. The default is 1024.

©2022, MyBatis.org « ALL RIGHTS RESERVED.

4 Mapper XML Files 61

The readOnly attribute can be set to true or false. A read-only cache will return the same instance of
the cached abject to all callers. Thus such objects should not be modified. This offers a significant
performance advantage though. A read-write cache will return a copy (via serialization) of the cached
object. Thisis slower, but safer, and thus the default is false.

NOTE Second level cacheistransactional. That meansthat it is updated when a Sgl Session finishes
with commit or when it finishes with rollback but no inserts/del etes/updates with flushCache=true
where executed.

4.1.7.1 Using a Custom Cache

In addition to customizing the cache in these ways, you can also completely override the cache
behavior by implementing your own cache, or creating an adapter to other 3rd party caching solutions.

<cache type="com donai n. sonet hi ng. MyCust onCache"/ >

This example demonstrates how to use a custom cache implementation. The class specified in the
type attribute must implement the org.apache.ibatis.cache.Cache interface and provide a constructor
that gets an String id as an argument. This interface is one of the more complex in the MyBatis
framework, but simple given what it does.

public interface Cache {
String getld();
int getSize();
voi d put Qbj ect (Cbj ect key, Object val ue);
hj ect get oj ect (Obj ect key);
bool ean hasKey(Obj ect key);
hj ect renovehj ect (bj ect key);
void clear();

}

To configure your cache, simply add public JavaBeans properties to your Cache implementation,
and pass properties via the cache Element, for example, the following would call a method called
set CacheFil e(String file) onyour Cacheimplementation:

<cache type="com domai n. sonet hi ng. MyCust onCache" >
<property nane="cacheFile" val ue="/tnp/ my-custom cache.tnp"/>
</ cache>

Y ou can use JavaBeans properties of all simple types, MyBatis will do the conversion. And you can
specify a placeholder(e.g. ${ cache. fi | e}) to replace value defined at configuration properties.

Since 3.4.2, the MyBatis has been supported to call an initialization method
after it's set all properties. If you want to use this feature, please implements the
org. apache.ibatis.builder.InitializingObject interface onyour custom cache class.

public interface InitializingObject {
void initialize() throws Exception;

}

NOTE Settings of cache (like eviction strategy, read write..etc.) in section above are not applied when
using Custom Cache.

It's important to remember that a cache configuration and the cache instance are bound to the
namespace of the SQL Map file. Thus, al statements in the same namespace as the cache are bound
by it. Statements can modify how they interact with the cache, or exclude themselves completely by

©2022, MyBatis.org « ALL RIGHTS RESERVED.

4 Mapper XML Files 62

using two simple attributes on a statement-by-statement basis. By default, statements are configured
like this:

<select ... flushCache="fal se" useCache="true"/>
<insert ... flushCache="true"/>
<update ... flushCache="true"/>
<delete ... flushCache="true"/>

Since that's the default, you obviously should never explicitly configure a statement that way. Instead,
only set the flushCache and useCache attributes if you want to change the default behavior. For
example, in some cases you may want to exclude the results of a particular select statement from the
cache, or you might want a select statement to flush the cache. Similarly, you may have some update
statements that don't need to flush the cache upon execution.

4.1.7.2 cache-ref

Recall from the previous section that only the cache for this particular namespace will be used or
flushed for statements within the same namespace. There may come a time when you want to share
the same cache configuration and instance between namespaces. In such cases you can reference
another cache by using the cache-ref element.

<cache-ref nanmespace="com soneone. appl i cati on. dat a. SoneMapper"/ >

©2022, MyBatis.org « ALL RIGHTS RESERVED.

5 Dynamic SQL 63

Dynamic SQL

5.1 Dynamic SQL

One of the most powerful features of MyBatis has always been its Dynamic SQL capabilities. If
you have any experience with JDBC or any similar framework, you understand how painful it is
to conditionally concatenate strings of SQL together, making sure not to forget spaces or to omit a
comma at the end of alist of columns. Dynamic SQL can be downright painful to deal with.

While working with Dynamic SQL will never be a party, MyBatis certainly improves the situation
with a powerful Dynamic SQL language that can be used within any mapped SQL statement.

The Dynamic SQL elements should be familiar to anyone who has used JSTL or any similar XML
based text processors. In previous versions of MyBatis, there were alot of elementsto know and
understand. MyBatis 3 greatly improves upon this, and now there are less than half of those el ements
to work with. MyBatis employs powerful OGNL based expressions to eliminate most of the other
elements:

o if
 choose (when, otherwise)

trim (where, set)
» foreach

51.1if

The most common thing to do in dynamic SQL is conditionally include a part of awhere clause. For
example:

<select id="findActiveBl ogWthTitleLike"
resul t Type="Bl og" >
SELECT * FROM BLOG
VHERE state = ‘ ACTI VF

<if test="title !'= null">
AND title like #{title}
<lif>
</ sel ect >

This statement would provide an optional text search type of functionality. If you passed in no title,
then all active Blogs would be returned. But if you do passin atitle, it will look for atitle like that
(for the keen eyed, yesin this case your parameter value would need to include any masking or
wildcard characters).

What if we wanted to optionally search by title and author? First, I’ d change the name of the
statement to make more sense. Then simply add another condition.

©2022, MyBatis.org « ALL RIGHTS RESERVED.

5 Dynamic SQL 64

<sel ect id="findActiveBl ogLi ke"
resul t Type="Bl og" >
SELECT * FROM BLOG WHERE state = ' ACTI VE
<if test="title !'= null">
AND title like #{title}
<[if>
<if test="author != null and author.name != null">
AND aut hor _nane |ike #{author. nane}
<[if>
</ sel ect >

5.1.2 choose, when, otherwise

Sometimes we don’'t want all of the conditionals to apply, instead we want to choose only one case
among many options. Similar to a switch statement in Java, MyBatis offers a choose element.

Let’'s use the example above, but now let’s search only on title if oneis provided, then only by author
if oneis provided. If neither is provided, let’s only return featured blogs (perhaps a strategically list
selected by administrators, instead of returning a huge meaningless list of random blogs).

<sel ect id="findActiveBl ogLi ke"
resul t Type="Bl og" >
SELECT * FROM BLOG WHERE state = ‘ ACTI VE

<choose>
<when test="title != null">
AND title like #{title}
</ when>
<when test="author != null and author.nanme != null">
AND aut hor _nare |i ke #{aut hor. nane}
</ when>

<ot her wi se>
AND featured = 1
</ ot herw se>
</ choose>
</ sel ect >

5.1.3 trim, where, set

The previous examples have been conveniently dancing around a notorious dynamic SQL challenge.
Consider what would happen if we return to our "if" example, but thistime we make"ACTIVE=1" a
dynamic condition as well.

©2022, MyBatis.org « ALL RIGHTS RESERVED.

5 Dynamic SQL 65

<sel ect id="findActiveBl ogLi ke"
resul t Type="Bl og" >
SELECT * FROM BLOG
VWHERE
<if test="state != null">
state = #{state}
<[if>
<if test="title !'= null">
AND title like #{title}
<[if>
<if test="author != null and author.nanme != null">
AND aut hor _nane |ike #{author. nane}
<[if>
</ sel ect >

What happens if none of the conditions are met? Y ou would end up with SQL that looked like this;

SELECT * FROM BLOG
VWHERE

Thiswould fail. What if only the second condition was met? Y ou would end up with SQL that looked
like this:

SELECT * FROM BLOG
WHERE
AND title like ‘soneTitle’

Thiswould also fail. This problem is not easily solved with conditionals, and if you've ever had to
write it, then you likely never want to do so again.

MyBatis has a simple answer that will likely work in 90% of the cases. And in cases where it doesn't,
you can customize it so that it does. With one simple change, everything works fine:

<sel ect id="findActiveBl ogLi ke"
resul t Type="Bl og" >
SELECT * FROM BLOG
<wher e>
<if test="state != null">
state = #{state}
</if>
<if test="title !=null">
AND title like #{title}
</if>
<if test="author !'= null and author.nanme != null">
AND aut hor _nare | i ke #{aut hor. nane}
</if>
</ wher e>
</ sel ect >

The where element knows to only insert "WHERE" if there is any content returned by the containing
tags. Furthermore, if that content begins with "AND" or "OR", it knows to strip it off.

If the where element does not behave exactly asyou like, you can customize it by defining your own
trim element. For example, the trim equivalent to the where element is:

©2022, MyBatis.org « ALL RIGHTS RESERVED.

5 Dynamic SQL 66

<trimprefix="WHERE" prefixOverrides="AND |OR ">

</trinp

The prefixOverrides attribute takes a pipe delimited list of text to override, where whitespace is
relevant. The result isthe removal of anything specified in the prefixOverrides attribute, and the
insertion of anything in the prefix attribute.

Thereisasimilar solution for dynamic update statements called set. The set element can be used to
dynamically include columns to update, and leave out others. For example:

<updat e i d="updat eAut hor | f Necessary" >
updat e Aut hor
<set >
<if test="usernane != null">usernane=#{usernane}, </if>
<if test="password != null">password=#{password}, </if>
<if test="email != null">enmail=#{email},</if>
<if test="bio != null">bio=#{bio}</if>
</ set >
where i d=#{i d}
</ updat e>

Here, the set element will dynamically prepend the SET keyword, and also eliminate any extraneous
commas that might trail the value assignments after the conditions are applied.

Alternatively, you can achieve the same effect by using trim element:

<trimprefix="SET" suffixOverrides=",">

</[trinp

Notice that in this case we're overriding a suffix, while we're till appending a prefix.

5.1.4 foreach

Another common necessity for dynamic SQL is the need to iterate over a collection, often to build an
IN condition. For example:

<sel ect id="sel ectPostIn" resultType="domain. bl og. Post">
SELECT *
FROM PCST P
<wher e>
<foreach iten="itent index="index" collection="1ist"
open="IDin (" separator="," close=")" nullable="true">
#{iten}
</ foreach>
</ wher e>
</ sel ect >

The foreach element is very powerful, and allows you to specify a collection, declare item and index
variables that can be used inside the body of the element. It also allows you to specify opening and
closing strings, and add a separator to place in between iterations. The element is smart in that it
won't accidentally append extra separators.

©2022, MyBatis.org « ALL RIGHTS RESERVED.

5 Dynamic SQL

67

NOTE Y ou can pass any Iterable object (for example List, Set, etc.), aswell asany Map or Array
object to foreach as collection parameter. When using an Iterable or Array, index will be the number
of current iteration and value item will be the element retrieved in thisiteration. When using aMap
(or Collection of Map.Entry objects), index will be the key object and item will be the value object.

Thiswraps up the discussion regarding the XML configuration file and XML mapping files. The
next section will discuss the Java APl in detail, so that you can get the most out of the mappings that
you've created.

5.1.5 script
For using dynamic SQL in annotated mapper class, script e ement can be used. For example:

@Jpdat e({ " <scri pt>",
"updat e Aut hor",

<set>",
<if test='"usernane != null'>usernane=#{usernane}, </if>",
<if test='password != null'>password=#{password}, </if>",
<if test="email != null'>email =#{emil}, </if>",
<if test="bio = null'>bio=#{bio}</if>",

</ set>",

"where id=#{id}",
"</script>"})
voi d updat eAut hor Val ues(Aut hor aut hor);

5.1.6 bind

The bi nd element lets you create a variable out of an OGNL expression and bind it to the context.
For example:

<sel ect id="sel ectBl ogsLi ke" resultType="Bl og">
<bi nd nanme="pattern" value="'"% + _paraneter.getTitle() + "'%" />
SELECT * FROM BLOG
VWHERE title LIKE #{pattern}
</ sel ect >

5.1.7 Multi-db vendor support

If adatabasel dProvider was configured a"_databaseld" variableis available for dynamic code, so you
can build different statements depending on database vendor. Have alook at the following example:

©2022, MyBatis.org « ALL RIGHTS RESERVED.

5 Dynamic SQL 68

<insert id="insert">
<sel ect Key keyProperty="id" resultType="int" order="BEFORE">

<if test="_databaseld == "oracle' ">
sel ect seq_users. nextval from dual
<[if>
<if test="_databaseld == "'db2"'">
sel ect nextval for seq_users from sysi bm sysdunmyl”
<[if>

</ sel ect Key>
insert into users values (#{id}, #{nanme})
</insert>

5.1.8 Pluggable Scripting Languages For Dynamic SQL

Starting from version 3.2 MyBatis supports pluggable scripting languages, so you can plug alanguage
driver and use that language to write your dynamic SQL queries.

Y ou can plug alanguage by implementing the following interface:

public interface LanguageDriver {
Par anmet er Handl er cr eat ePar anet er Handl er (MappedSt at enment mappedSt at ement, Obj ect p
Sql Source createSql Source(Configuration configuration, XNode scrijpt, C ass<?> par
Sql Source createSql Source(Configuration configuration, String script, Cass<?> pa

}

Once you have your custom language driver you can set it to be the default by configuring it in the
mybatis-config.xml file:

<typeAl i ases>
<typeAlias type="org.sanmpl e. My\LanguageDri ver" alias="nyLanguage"/>
</typeAliases>
<settings>
<setting name="defaul t Scri pti ngLanguage" val ue="nyLanguage"/ >
</settings>

Instead of changing the default, you can specify the language for an specific statement by adding the
| ang attribute as follows:

<sel ect id="sel ectBl og" |ang="nyLanguage">
SELECT * FROM BLOG
</ sel ect >

Or, in the case you are using mappers, using the @ ang annotation:

public interface Mapper {
@ang(MyLanguageDri ver. cl ass)
@pel ect (" SELECT * FROM BLOG')
Li st <Bl og> sel ect Bl og();

}

NOTE Y ou can use Apache Velocity as your dynamic language. Have alook at the MyBatis-Velocity
project for the details.

©2022, MyBatis.org « ALL RIGHTS RESERVED.

5 Dynamic SQL 69

All the xml tags you have seen in the previous sections are provided by the default MyBatis language
that is provided by the driver or g. apache. i batis. scri pting. xnm t ags. Xm LanguageDri ver
whichisaliased asxm .

©2022, MyBatis.org « ALL RIGHTS RESERVED.

6 Java API 70

Java API

6.1 Java API

Now that you know how to configure MyBatis and create mappings, you're ready for the good stuff.
The MyBatis Java APl iswhere you get to reap the rewards of your efforts. Asyou'll see, compared
to JDBC, MyBatis greatly simplifies your code and keeps it clean, easy to understand and maintain.
MyBatis 3 has introduced a number of significant improvements to make working with SQL Maps
even better.

6.1.1 Directory Structure

Before we dive in to the Java API itself, it'simportant to understand the best practices surrounding
directory structures. MyBatisis very flexible, and you can do almost anything with your files. But as
with any framework, there's a preferred way.

Let'slook at atypical application directory structure:

[/ my_application
/bin
/devlib

/lib
<-- MyBatis *.jar files go here.
/src
/ or g/ nyapp/
[action

/ dat a
<-- MyBatis artifacts go here, including, Mapper C asses, XM Configuration, XM Mappin
[mybati s-config. xm
/ Bl ogMapper . java
/ Bl ogMapper . xm
/ nmodel
/ service
/view

[properties
<-- Properties included in your XM. Configuration go here.
/test
[or g/ nyapp/
[action
/ dat a
/ nmodel
/ service
/view
[properties
[web
/ VEB- | NF
/web. xm

©2022, MyBatis.org « ALL RIGHTS RESERVED.

6 Java API

71

Remember, these are preferences, not requirements, but others will thank you for using a common

directory structure.
Therest of the examplesin this section will assume you're following this directory structure.

6.1.2 SqlSessions

The primary Java interface for working with MyBatis is the SglSession. Through this interface you

can execute commands, get mappers and manage transactions. Wel'll talk more about Sgl Session
itself shortly, but first we have to learn how to acquire an instance of SglSession. Sgl Sessions

are created by a Sgl SessionFactory instance. The Sgl SessionFactory contains methods for

creating instances of SglSessions al different ways. The Sgl SessionFactory itself is created by the

Sql SessionFactoryBuilder that can create the Sgl SessonFactory from XML, annotations or hand

coded Java configuration.

NOTE When using MyBatis with a dependency injection framework like Spring or Guice,
SqlSessions are created and injected by the DI framework so you don't need to use the

Sql SessionFactoryBuilder or SglSessionFactory and can go directly to the Sgl Session section. Please

refer to the MyBatis-Spring or MyBatis-Guice manuals for further info.

6.1.2.1 SqglSessionFactoryBuilder

The Sqgl SessionFactoryBuilder has five build() methods, each which allows you to build a
Sql SessionFactory from a different source.

Sql Sessi onFactory buil d(1 nput Stream i nput Strean)

Sql Sessi onFactory buil d(Confi guration config)

Sql Sessi onFactory buil d(I nput Stream i nputStream String environment
Sql Sessi onFactory buil d(I nput Stream i nput Stream Properties propert
Sql Sessi onFactory buil d(1 nput Stream i nputStream String env, Propern

)
i es)
ties props)

The first four methods are the most common, as they take an InputStream instance that refers to an

XML document, or more specifically, the mybatis-config.xml file discussed above. The optional
parameters are environment and properties. Environment determines which environment to |oad,

including the datasource and transaction manager. For example:

<envi ronments defaul t ="devel opnent ">
<envi ronnent id="devel opnent">
<transacti onManager type="JDBC'>

<dat aSour ce type="POOLED" >

</ envi ronnment >

<envi ronment id="production">
<transacti onManager type="MANAGED" >
<dat aSour ce type="JNDI ">

</ envi ronnent >
</ envi ronnent s>

If you call abuild method that takes the environment parameter, then MyBatis will use the

configuration for that environment. Of course, if you specify an invalid environment, you will receive

©2022, MyBatis.org « ALL RIGHTS RESERVED.

6 Java API 72

an error. If you call one of the build methods that does not take the environment parameter, then the
default environment is used (which is specified as default="development" in the example above).

If you call amethod that takes a properties instance, then MyBatis will load those properties and make
them available to your configuration. Those properties can be used in place of most valuesin the
configuration using the syntax: ${ propName}

Recall that properties can also be referenced from the mybatis-config.xml file, or specified directly
within it. Therefore it's important to understand the priority. We mentioned it earlier in this document,
but hereit isagain for easy reference:

If aproperty existsin more than one of these places, MyBatis |oads them in the following order.

 Properties specified in the body of the properties element are read first,

* Properties|loaded from the classpath resource or url attributes of the properties element are read
second, and override any duplicate properties already specified,

» Properties passed as a method parameter are read last, and override any duplicate properties that
may have been loaded from the properties body and the resource/url attributes.

Thus, the highest priority properties are those passed in as a method parameter, followed by resource/
url attributes and finally the properties specified in the body of the properties element.

So to summarize, the first four methods are largely the same, but with overridesto allow you
to optionally specify the environment and/or properties. Here is an example of building a
Sql SessionFactory from an mybatis-config.xml file.

String

resource = "org/ nmybatis/builder/nmybatis-config.xm";

I nput St ream

i nput Stream = Resour ces. get Resour ceAsSt r ean(r esour ce) ;
Sql Sessi onFact or yBui | der

bui | der = new Sql Sessi onFact oryBui | der () ;

Sqgl Sessi onFact ory

factory = builder. build(inputStream;

Notice that we're making use of the Resources utility class, which livesin the org.apache.ibatis.io
package. The Resources class, asits name implies, helps you load resources from the classpath,
filesystem or even aweb URL. A quick look at the class source code or inspection through your IDE
will revedl itsfairly obvious set of useful methods. Here's a quick list:

URL get ResourceURL(String resource)

URL get ResourceURL(C assLoader | oader, String resource)
| nput St r eam get Resour ceAsStrean(String resource)

I nput St r eam get Resour ceAsSt rean(Cl assLoader | oader, String resource)
Properties get ResourceAsProperties(String resource)
Properties get ResourceAsProperties(C assLoader | oader, String resource)
Reader get ResourceAsReader (String resource)

Reader get Resour ceAsReader (Cl assLoader | oader, String resource)
Fil e get ResourceAsFile(String resource)

Fil e get ResourceAsFil e(C assLoader | oader, String resource)

I nput Stream get Url AsStreanm(String url String)

Reader get Url AsReader (String url String)

Properties get Ul AsProperties(String url String)

Ol ass classForNanme(String cl assNane)

©2022, MyBatis.org « ALL RIGHTS RESERVED.

6 Java API 73

Thefinal build method takes an instance of Configuration. The Configuration class contains
everything you could possibly need to know about a Sgl SessionFactory instance. The Configuration
classisuseful for introspecting on the configuration, including finding and manipulating SQL maps
(not recommended once the application is accepting requests). The configuration class has every
configuration switch that you've learned about already, only exposed as a Java API. Here'sasimple
example of how to manually a Configuration instance and passit to the build() method to create a
Sql SessionFactory.

Dat aSour ce dat aSource = BaseDat aTest. creat eBl ogDat aSour ce();
Transacti onFactory transacti onFactory = new JdbcTransacti onFactory();

Configuration configuration = new Configuration(environment);
confi guration. setLazyLoadi ngEnabl ed(true);

confi gurati on. set Enhancenent Enabl ed(true);

configuration. get TypeAl i asRegistry().registerAlias(Blog.class);
configuration. get TypeAliasRegistry().registerAlias(Post.class);
configuration. get TypeAliasRegi stry().registerAlias(Author.class);
confi gurati on. addMapper (BoundBl ogMapper . cl ass) ;

confi gurati on. addvapper (BoundAut hor Mapper . cl ass) ;

Sql Sessi onFact oryBui | der buil der = new Sqgl Sessi onFact or yBui | der () ;
Sql Sessi onFactory factory = buil der. buil d(configuration);

Now you have a Sgl SessionFactory that can be used to create Sgl Session instances.

6.1.2.2 SqglSessionFactory
Sql SessionFactory has six methods that are used to create SglSession instances. In general, the
decisions you'll be making when selecting one of these methods are:
» Transaction: Do you want to use a transaction scope for the session, or use auto-commit
(usually means no transaction with most databases and/or JDBC drivers)?

» Connection: Do you want MyBatis to acquire a Connection from the configured DataSource for
you, or do you want to provide your own?

» Execution: Do you want MyBatis to reuse PreparedStatements and/or batch updates (including
inserts and del etes)?

The set of overloaded openSession() method signatures allow you to choose any combination of these
options that makes sense.

Sql Sessi on openSessi on()

Sql Sessi on openSessi on(bool ean aut oCommi t)

Sql Sessi on openSessi on(Connecti on connecti on)

Sql Sessi on openSessi on(Transacti onl sol ati onLevel |evel)

Sql Sessi on openSessi on(Execut or Type execType)

Sql Sessi on openSessi on(Execut or Type execType, bool ean aut oCommit)
Sql Sessi on openSessi on(Execut or Type execType, Connection connecti on)
Configuration getConfiguration();

The default openSession() method that takes no parameters will create a Sgl Session with the
following characteristics:

A transaction scope will be started (i.e. NOT auto-commit).

©2022, MyBatis.org « ALL RIGHTS RESERVED.

Envi ronment environment = new Environnent ("devel opment"”, transacti onFactory,

dat aSo

Sql Sessi on openSessi on(Execut or Type execType, Transactionlsol ati onlevel |evel)

6 Java API 74

» A Connect i on object will be acquired from the DataSource instance configured by the active
environment.

» Thetransaction isolation level will be the default used by the driver or data source.
* No PreparedStatements will be reused, and no updates will be batched.

Most of the methods are pretty self explanatory. To enable auto-commit, pass avalue of t r ue to the
optional aut oConmi t parameter. To provide your own connection, pass an instance of Connect i on
tothe connect i on parameter. Note that there's no override to set both the Connect i on and

aut oConmi t , because MyBatis will use whatever setting the provided connection object is
currently using. MyBatis uses a Java enumeration wrapper for transaction isolation levels, called
Transacti onl sol ati onLevel , but otherwise they work as expected and have the 5 levels
supported by JDBC (NONE, READ_UNCOWVM TTED, READ_COWM TTED, REPEATABLE_READ,

SERI ALI ZABLE).

The one parameter that might be new to you is Execut or Type. This enumeration defines 3 values:

* Execut or Type. SI MPLE: Thistype of executor does nothing special. It creates a new
PreparedStatement for each execution of a statement.

» Execut or Type. REUSE: Thistype of executor will reuse PreparedStatements.

» Execut or Type. BATCH: This executor will batch al update statements and demarcate them as
necessary if SELECT s are executed between them, to ensure an easy-to-understand behavior.

NOTE There's one more method on the Sql SessionFactory that we didn't mention, and that is
getConfiguration(). This method will return an instance of Configuration that you can use to
introspect upon the MyBatis configuration at runtime.

NOTE If you've used a previous version of MyBatis, you'll recall that sessions, transactions and
batches were all something separate. Thisisno longer the case. All three are neatly contained within
the scope of a session. Y ou need not deal with transactions or batches separately to get the full benefit
of them.

6.1.2.3 SqglSession

As mentioned above, the SglSession instance is the most powerful classin MyBatis. It is where you'll
find al of the methods to execute statements, commit or rollback transactions and acquire mapper
instances.

There are over twenty methods on the Sgl Session class, so let's break them up into more digestible
groupings.

6.Statement Execution Methods

These methods are used to execute SELECT, INSERT, UPDATE and DELETE statements that are
defined in your SQL Mapping XML files. They are pretty self explanatory, each takesthe ID of the
statement and the Parameter Object, which can be a primitive (auto-boxed or wrapper), a JavaBean, a
POJO or aMap.

<T> T selectOne(String statenent, Object paraneter)
<E> List<E> selectList(String statenent, (bject paraneter)
<T> Cursor<T> selectCursor(String statenent, Cbject paraneter)

int insert(String statenent, (bject paraneter)
int update(String statenent, Object paraneter)
int delete(String statenent, Object paraneter)

The difference between sel ect One and sel ect Li st isonly inthat sel ect One must return exactly
one object or nul | (none). If any more than one, an exception will be thrown. If you don't know how
many objects are expected, use sel ect Li st . If you want to check for the existence of an object,

©2022, MyBatis.org « ALL RIGHTS RESERVED.

<K, V> Map<K, V> sel ect Map(String statenent, Object paraneter, String mapKey)

6 Java API 75

you're better off returning acount (O or 1). The sel ect Map isaspecia casein that it is designed to
convert alist of resultsinto a Map based on one of the propertiesin the resulting objects. Because not
al statements require a parameter, these methods are overloaded with versions that do not require the
parameter object.

The valuereturned by thei nsert, updat e and del et e methods indicate the number of rows
affected by the statement.

<T> T selectOne(String statenent)

<E> List<E> selectList(String statenent)

<T> Cursor<T> sel ectCursor(String statenent)

<K, V> Map<K, V> sel ect Map(String statement, String napKey)
int insert(String statenent)

int update(String statenent)

int delete(String statenent)

A Cur sor offersthe sameresultsasalist, except it fetches datalazily usingan | t er at or .

try (Cursor<MyEntity> entities = session.selectCursor(statenment, paran)) {
for (M/JEntity entity : entities) {
/1 process one entity

}

}

Finally, there are three advanced versions of the sel ect methods that alow you to restrict the range
of rowsto return, or provide custom result handling logic, usually for very large data sets.

<E> List<E> selectlList (String statement, Cbject paraneter, RowBounds rowBounds)
<T> Cursor<T> selectCursor(String statement, Cbject paraneter, RowBounds rowBounds)
<K, V> Map<K, V> sel ect Map(String statement, Object paraneter, String mapKey, RowBoun
void select (String statenment, Cbject paraneter, ResultHandl er<T> handl er)

void select (String statenment, Cbject paraneter, RowBounds rowBounds, ResultHandl er

The RowBounds parameter causes MyBatis to skip the number of records specified, as well as limit
the number of results returned to some number. The RowBounds class has a constructor to take both
theof f set and | i mi t, and is otherwise immutable.

int offset = 100;
int limt = 25;
RowBounds rowBounds = new RowBounds(offset, limt);

Different drivers are able to achieve different levels of efficiency in this regard. For the best
performance, use result set types of SCROLL_SENSI Tl VE or SCROLL_|I NSENSI TI VE (in other words:
not FORWARD_CONLY).

The Resul t Handl er parameter allows you to handle each row however you like. Y ou can add it
toali st, create aMap, Set , or throw each result away and instead keep only rolled up totals of
calculations. Y ou can do pretty much anything with the Resul t Handl er, and it's what MyBatis uses
internaly itself to build result set lists.

Since 3.4.6, Resul t Handl er passed to a CALLABLE statement is used on every REFCURSOR output
parameter of the stored procedure if there is any.

Theinterface isvery ssmple.

©2022, MyBatis.org « ALL RIGHTS RESERVED.

6 Java API 76

package org. apache.ibatis. session;
public interface ResultHandl er<T> {
voi d handl eResul t (Resul t Cont ext <? extends T> context);

}

The Resul t Cont ext parameter gives you access to the result object itself, a count of the number of
result objects created, and aBool ean st op() method that you can use to stop MyBatis from loading
any more results.

Using aResul t Handl er hastwo limitations that you should be aware of:

» Datagotten from a method called with a Resul t Handl er will not be cached.

* When using advanced r esul t Maps MyBatis will probably require several rows to build
an object. If aResul t Handl er isused you may be given an object whose associations or
collections are not yet filled.

6.Batch update statement Flush Method

There is method for flushing (executing) batch update statements that are stored in a JDBC driver
class at any time. This method can be used when the Execut or Type isExecut or Type. BATCH.

Li st <Bat chResul t> fl ushSt at enent s()

6.Transaction Control Methods

There are four methods for controlling the scope of atransaction. Of course, these have no effect if
you've chosen to use auto-commit or if you're using an external transaction manager. However, if
you're using the JDBC transaction manager, managed by the Connect i on instance, then the four
methods that will comein handy are:

void commit()

voi d commit (bool ean force)
voi d rol | back()

voi d rol | back(bool ean force)

By default MyBatis does not actually commit unless it detects that the database has been changed
by acall toi nsert,updat e or del et e. If you've somehow made changes without calling these
methods, then you can passt r ue into theconmi t andr ol | back methods to guarantee that they
will be committed (note, you still can't force a session in auto-commit mode, or one that is using an
external transaction manager). Most of the time you won't haveto call r ol | back() , as MyBatis
will do that for you if you don't call commit. However, if you need more fine-grained control over
a session where multiple commits and rollbacks are possible, you have the rollback option there to
make that possible.

NOTE MyBatis-Spring and MyBatis-Guice provide declarative transaction handling. So if you are
using MyBatis with Spring or Guice please refer to their specific manuals.

6.Local Cache

MyBatis uses two caches: alocal cache and a second level cache.

Each time anew session is created MyBatis creates alocal cache and attaches it to the session. Any
query executed within the session will be stored in the local cache so further executions of the same

guery with the same input parameters will not hit the database. The local cacheis cleared upon
updat e, commi t, rol | back and cl ose.

By default local cache datais used for the whole session duration. This cache is needed to resolve
circular references and to speed up repeated nested queries, so it can never be completely disabled but

©2022, MyBatis.org « ALL RIGHTS RESERVED.

6 Java API 77

you can configure the local cache to be used just for the duration of a statement execution by setting
| ocal CacheScope=STATEMENT.

Note that when the | ocal CacheScope isset to SESSI ON, MyBatis returns references to the same
objects which are stored in the local cache. Any modification of the returned objects (lists etc.)
influences the local cache contents and subsequently the values which are returned from the cache
in the lifetime of the session. Therefore, as best practice, do not to modify the objects returned by
MyBdtis.

Y ou can clear thelocal cache at any time by calling:

‘void cl ear Cache() ‘

6.Ensuring that SglSession is Closed

‘void cl ose() ‘

The most important thing you must ensure is to close any session that you open. The best way to
ensure thisisto use the following unit of work pattern:

try (Sql Session session = sql Sessi onFact ory. openSession()) {
/1 following 3 lines are pseudocode for "doi ng some work"
session.insert(...);
session.update(...);
session.delete(...);
session.commit();

}

NOTE Just like Sql Sessi onFact or y, you can get the instance of Conf i gur at i on that the
Sql Sessi on isusing by calling the get Confi gur ati on() method

‘Configuration get Confi guration()

6.Using Mappers

‘<T> T get Mapper (O ass<T> type) ‘

Whilethevariousi nsert, updat e, del et e and sel ect methods above are powerful, they are aso
very verbose, not type safe and not as helpful to your IDE or unit tests as they could be. We've already
seen an example of using Mapper sin the Getting Started section above.

Therefore, a more common way to execute mapped statementsisto use Mapper classes. A Mapper
classis simply an interface with method definitions that match up against the Sql Sessi on methods.
The following example class demonstrates some method signatures and how they map to the

Sql Sessi on.

©2022, MyBatis.org « ALL RIGHTS RESERVED.

6 Java API 78

public interface AuthorMapper {
/1 (Author) sel ectOne("sel ectAuthor™, 5);
Aut hor sel ect Author(int id);

/1 (List<Author>) selectList("sel ectAuthors")
Li st <Aut hor> sel ect Aut hors();

/1 (Map<I nt eger, Aut hor>) sel ect Map("sel ect Aut hors”, "id")
@mBpKey("id")
Map<I nt eger, Author> sel ect Aut hors();

/1 insert("insertAuthor", author)
i nt insertAuthor (Aut hor author);

/1 updat eAut hor (" updat eAut hor ", aut hor)
i nt updat eAut hor (Aut hor aut hor);

/1 del ete("del et eAut hor", 5)
int deleteAuthor(int id);

}

In anutshell, each Mapper method signature should match that of the Sql Sessi on method that
it's associated to, but without the St r i ng parameter ID. Instead, the method name must match the
mapped statement ID.

In addition, the return type must match that of the expected result type for single results or an array or
collection for multiple results or Cur sor . All of the usual types are supported, including: Primitives,
Maps, POJOs and JavaBeans.

NOTE Mapper interfaces do not need to implement any interface or extend any class. Aslong as the
method signature can be used to uniquely identify a corresponding mapped statement.

NOTE Mapper interfaces can extend other interfaces. Be sure that you have the statements in the
appropriate namespace when using XML binding to Mapper interfaces. Also, the only limitation is
that you cannot have the same method signature in two interfaces in a hierarchy (a bad idea anyway).

Y ou can pass multiple parameters to a mapper method. If you do, they will be named by the literal
"param" followed by their position in the parameter list by default, for example: #{ par ant},

#{ par ant} etc. If you wish to change the name of the parameters (multiple only), then you can use
the @ar an(" par anNane") annotation on the parameter.

Y ou can also pass a RowBounds instance to the method to limit query results.

6.Mapper Annotations

Since the very beginning, MyBatis has been an XML driven framework. The configuration is XML
based, and the Mapped Statements are defined in XML. With MyBatis 3, there are new options
available. MyBatis 3 builds on top of acomprehensive and powerful Java based Configuration API.
This Configuration APl isthe foundation for the XML based MyBatis configuration, as well as the
new annotation-based configuration. Annotations offer a simple way to implement simple mapped
statements without introducing alot of overhead.

NOTE Java annotations are unfortunately limited in their expressiveness and flexibility. Despite alot
of time spent in investigation, design and trials, the most powerful MyBatis mappings simply cannot
be built with annotations — without getting ridiculous that is. C# Attributes (for example) do not suffer
from these limitations, and thus MyBatis.NET will enjoy a much richer alternative to XML. That said,
the Java annotation-based configuration is not without its benefits.

©2022, MyBatis.org « ALL RIGHTS RESERVED.

6 Java API

The annotations ar e as follows;

@acheNanespace

@roperty

Cl ass

N/A

@CacheNanespaceRef C ass

@Const ruct or Ar gs

©2022,

MyBatis.org -

Met hod

ALL RIGHTS RESERVED.

<cache>

<property>

<cacheRef >

<constructor >

79

Configures the cache for
the given namespace
(i.e. class). Attributes:

i mpl enent ati on,
evi ction,

fl ushl nterval,
size,readWite,

bl ocki ng,
properties.

Specifies the property
value or placeholder(can
replace by configuration
properties that defined
atthe nybati s-
config.xm).
Attributes: nane, val ue.
(Available on MyBatis
3.4.2+)

References the cache

of another namespace

to use. Note that

caches declared in an
XML mapper file are
considered a separate
namespace, even if they
share the same FQCN.
Attributes: val ue and
name. If you use this
annotation, you should be
specified either val ue
or nane attribute. For the
val ue attribute specify
a java type indicating

the namespace(the
namespace name
become a FQCN of
specified java type), and
for the name attribute(this
attribute is available since
3.4.2) specify a name
indicating the namespace.

Collects a group of
results to be passed to a
result object constructor.
Attributes: val ue, which
is an array of Ar gs.

6 Java API

@\ g N/A

@ypeDi scri m nat or Met hod

@ase N/A

@Resul ts Met hod

©2022, MyBatis.org « ALL RIGHTS RESERVED.

o <ar g>
» <i dArg>

<di scri m nat or >

<case>

<r esul t Map>

80

A single constructor
argument that is part

of a ConstructorArgs
collection. Attributes:

i d,col um,

j avaType,j dbcType,
t ypeHandl er,

sel ect, resul t Map.
The id attribute is a
boolean value that
identifies the property to
be used for comparisons,
similar to the <i dAr g>
XML element. Since
3.5.4, it can be used as
repeatable annotation.

A group of value cases
that can be used to
determine the result
mapping to perform.
Attributes: col um,

j avaType,j dbcType,
t ypeHandl er, cases.
The cases attribute is an
array of Cases.

A single case of a value
and its corresponding
mappings. Attributes:
val ue, t ype,

resul t s. The results
attribute is an array

of Results, thus this
Case Annotation is
similar to an actual
Resul t Map, specified
by the Resul t s
annotation below.

A list of Result mappings
that contain details of how
a particular result column
is mapped to a property or
field. Attributes: val ue,

i d. The value attribute

is an array of Resul t
annotations. The id
attribute is the name of
the result mapping.

6 Java API

@Resul t

@ne

©2022,

MyBatis.org -

N/A

N/A

ALL RIGHTS RESERVED.

o <resul t>
o <jid>

<associ ati on>

81

A single result mapping
between a column

and a property or

field. Attributes: i d,
col um, pr operty,
j avaType,j dbcType,
t ypeHandl er, one,
many. The id attribute
is a boolean value that
indicates that the property
should be used for
comparisons (similar

to <i d> in the XML
mappings). The one
attribute is for single
associations, similar

to <associ ati on>,
and the many attribute
is for collections, similar
to<col | ecti on>.
They are named as
they are to avoid class
naming conflicts. Since
3.5.4, it can be used as
repeatable annotation.

A mapping to a single
property value of a
complex type. Attributes:
sel ect , which is the
fully qualified name of a
mapped statement (i.e.
mapper method) that
can load an instance of
the appropriate type.

f et chType, which
supersedes the global
configuration parameter
| azyLoadi ngEnabl ed
for this mapping.

resul t Map(available
since 3.5.5), which is the
fully qualified name of

a result map that map

to a single container
object from select result.
col ummpPr ef i x(available
since 3.5.5), which

is column prefix for
grouping select columns
at nested result map.
NOTE You will notice
that join mapping is

not supported via the
Annotations API. This is
due to the limitation in
Java Annotations that
does not allow for circular
references.

6 Java API

@eny

@apKey

©2022,

MyBatis.org -

N/A

Met hod

ALL RIGHTS RESERVED.

<col | ecti on>

82

A mapping to a collection
property of a complex
type. Attributes: sel ect
which is the fully qualified
name of a mapped
statement (i.e. mapper
method) that can load a
collection of instances

of the appropriate types.
f et chType, which
supersedes the global
configuration parameter

| azyLoadi ngEnabl ed
for this mapping.

resul t Map(available
since 3.5.5), which

is the fully qualified

name of a result map
that map to collection
object from select result.
col ummpPr ef i x(available
since 3.5.5), which

is column prefix for
grouping select columns
at nested result map.
NOTE You will notice
that join mapping is

not supported via the
Annotations API. This is
due to the limitation in
Java Annotations that
does not allow for circular
references.

This is used on methods
which return type is a
Map. It is used to convert
a List of result objects

as a Map based on a
property of those objects.
Attributes: val ue, which
is a property used as the
key of the map.

6 Java API 83

@t i ons Met hod Attributes of mapped This annotation provides
statements. access to the wide

range of switches and
configuration options that
are normally present on
the mapped statement
as attributes. Rather
than complicate each
statement annotation,
the Opt i ons annotation
provides a consistent
and clear way to access
these. Attributes:
useCache=true,
fl ushCache=Fl ushCachePol i cy. DE
resul t Set Type=DEFAULT,
st at enment Ty pe=PREPARED,
fetchSi ze=-1,
ti meout =-1,
useGener at edKeys=f al se,
keyProperty="",
keyCol um="",
resul t Sets="" and
dat abasel d="".
It's important to
understand that with Java
Annotations, there is no
way to specify nul |
as a value. Therefore,
once you engage the
Opt i ons annotation,
your statement is subject
to all of the default values.
Pay attention to what the
default values are to avoid
unexpected behavior. The
dat abasel d(Available
since 3.5.5), in case
there is a configured
Dat abasel dProvi der,
the MyBatis use the
Opt i ons with no
dat abasel d attribute
or with a dat abasel d
that matches the
current one. If found
with and without the
dat abasel d the latter
will be discarded.
Note that key Col umm
is only required in certain
databases (like Oracle
and PostgreSQL). See
the discussion about
keyCol umm and
keyPr operty above
in the discussion of the
insert statement for
more information about
allowable values in these
attributes.

©2022, MyBatis.org « ALL RIGHTS RESERVED.

6 Java API 84

e @nsert Met hod « <insert> Each of these annotations
» @Jpdat e « <updat e> represents the actual SQL
. @el ete . <del et e> that is to be executed.

They each take an array
of strings (or a single
string will do). If an array
of strings is passed, they
are concatenated with

a single space between
each to separate them.
This helps avoid the
"missing space" problem
when building SQL in
Java code. However,
you're also welcome to
concatenate together

a single string if you

like. Attributes: val ue,
which is the array of
Strings to form the single
SQL statement. The

dat abasel d(Available
since 3.5.5), in case
there is a configured

Dat abasel dProvi der,
the MyBatis use a
statement with no

dat abasel d attribute
or with a dat abasel d
that matches the

current one. If found
with and without the

dat abasel d the latter
will be discarded.

 @el ect « <sel ect >

©2022, MyBatis.org « ALL RIGHTS RESERVED.

6 Java API

©2022, MyBatis.org « ALL RIGHTS RESERVED.

@ nsert Provi der Met hod
@Jpdat ePr ovi der
@el et eProvi der
@sel ect Provi der

<i nsert>
<updat e>
<del et e>
<sel ect >

85

Allows for creation

of dynamic SQL.

These alternative SQL
annotations allow you

to specify a class and a
method name that will
return the SQL to run at
execution time (Since
3.4.6, you can specify
the Char Sequence
instead of St ri ng as a
method return type). Upon
executing the mapped
statement, MyBatis will
instantiate the class, and
execute the method, as
specified by the provider.
You can pass objects
that passed to arguments
of a mapper method,
"Mapper interface type",
"Mapper method" and
"Database ID" via the

Pr ovi der Cont ext (available
since MyBatis 3.4.5

or later) as method
argument. (In MyBatis 3.4
or later, it's allow multiple
parameters) Attributes:
val ue, t ype, net hod
and dat abasel d

The val ue and t ype
attribute is a class (The

t ype attribute is alias
for val ue, you must be
specify either one. But
both attributes can be
omit when specify the
def aul t Sgl Provi der Type
as global configuration).
The net hod is the
name of the method

on that class (Since
3.5.1, you can omit

met hod attribute, the
MyBatis will resolve a
target method via the
Provi der Met hodResol ver
interface. If not resolve
by it, the MyBatis use

the reserved fallback
method that named
provi deSql). The
dat abasel d(Available
since 3.5.5), in case
there is a configured

Dat abasel dPr ovi der
the MyBatis will use a
provider method with no
dat abasel d attribute
or with a dat abasel d
that matches the

current one. If found

with and without the

dat abasel d the latter
will be discarded. NOTE
Following this section is
a discussion about the
class. which can help

6 Java API

@ ar am

©2022,

MyBatis.org -

Par amet er

ALL RIGHTS RESERVED.

N/A

86

If your mapper

method takes multiple
parameters, this
annotation can be applied
to a mapper method
parameter to give each of
them a name. Otherwise,
multiple parameters

will be named by their
position prefixed with
"param” (not including
any RowBounds
parameters). For
example #{ par aml} ,
#{ par an} etc.

is the default. With

@ar an(" person"),
the parameter would be
named #{ per son} .

6 Java API

@el ect Key

©2022,

MyBatis.org -

Met hod

ALL RIGHTS RESERVED.

<sel ect Key>

87

This annotation duplicates
the <sel ect Key>
functionality for

methods annotated

with @ nsert,

@ nsert Provi der,
@Jpdat e, or

@Jpdat ePr ovi der .
It is ignored for other
methods. If you specify
a @el ect Key
annotation, then MyBatis
will ignore any generated
key properties set via the
@t i ons annotation,
or configuration
properties. Attributes:

st at enent an array of
strings which is the SQL
statement to execute,
keyPr operty which
is the property of the
parameter object that will
be updated with the new
value, bef or e which
must be either t r ue or
f al se to denote if the
SQL statement should be
executed before or after
the insert, r esul t Type
which is the Java type

of the keyPr operty,
and st at enent Type
is a type of the
statement that is any
one of STATENMENT,
PREPARED or
CALLABLE that is
mapped to St at enent
Pr epar edSt at enent
and

Cal | abl eSt at enent
respectively. The default
is PREPARED. The

dat abasel d(Available
since 3.5.5), in case
there is a configured

Dat abasel dPr ovi der,
the MyBatis will use

a statement with no

dat abasel d attribute
or with a dat abasel d
that matches the

current one. If found

with and without the

dat abasel d the latter
will be discarded.

6 Java API 88

@resul t Map Met hod N/A This annotation is
used to provide the id
ofa<resul t Map>
element in an XML
mapper to a @el ect
or @el ect Provi der
annotation. This allows
annotated selects to
reuse resultmaps that
are defined in XML. This
annotation will override
any @Resul t s or
@const ruct or Ar gs
annotation if both are
specified on an annotated
select.

@resul t Type Met hod N/A This annotation is used
when using a result
handler. In that case,
the return type is void
so MyBatis must have a
way to determine the type
of object to construct for
each row. If there is an
XML result map, use the
@ResultMap annotation.
If the result type is
specified in XML on the
<sel ect > element, then
no other annotation is
necessary. In other cases,
use this annotation. For
example, if a @Select
annotated method will
use a result handler, the
return type must be void
and this annotation (or
@ResultMap) is required.
This annotation is ignored
unless the method return
type is void.

@ ush Met hod N/A If this annotation is used,
it can be called the
Sql Sessi on#f | ushSt at emrent s()
via method defined at a
Mapper interface.(MyBatis
3.3 or above)

6.Mapper Annotation Examples

This example shows using the @SelectK ey annotation to retrieve a value from a sequence before an
insert:

©2022, MyBatis.org « ALL RIGHTS RESERVED.

6 Java API

true, resultType=
i nt.class)

i nt insertTabl e3(Nanme nane);

@nsert("insert into table3 (id, nane) val ues(#{nameld}, #{nane})")
@el ect Key(statement ="cal | next val ue for Test Sequence"”, keyPropert

This example shows using the @Sel ectK ey annotation to retrieve an identity value after an insert:

@nsert("insert into table2 (nane) val ues(#{nane})")

@Bel ect Key(statenment="call identity()", keyProperty="naneld",
fal se, resultType=

i nt.class)

i nt insertTabl e2(Nane nane);

bef or

89

y="nanel d",

e=

This example shows using the @ ush annotation to call the Sgl Sessi on#f | ushSt at enent s() :

@l ush
Li st <Bat chResul t> fl ush();

These examples show how to name a ResultMap by specifying id attribute of @Results annotation.

@Results(id = "userResult", value = {
@Resul t (property = "id", colum = "uid", id =

true),
@Resul t (property = "firstNane", colum = "first_nane"),
@Resul t (property = "l ast Nane", colum = "l|ast_nane")

1)

@Bel ect("select * fromusers where id = #{id}")
User getUserByld(Integer id);

@Results(id = "conpanyResul ts")
@onst ruct or Ar gs({

@\rg(colum = "cid", javaType = Integer.class, id =
true),
@\rg(colum = "nanme", javaType = String.cl ass)

})
@Bel ect ("sel ect * from conpany where id = #{id}")
Conpany get ConpanyByl d(1 nteger id);

This example shows solo parameter using the SelectProvider annotation:

©2022, MyBatis.org « ALL RIGHTS RESERVED.

bef o

6 Java API 90

@bel ect Provi der (type = User Sql Bui | der. cl ass, method = "buil dGet UsensByNane")
Li st <User > get User sByNane(Stri ng name);

cl ass User Sql Bui | der {
public static String buil dGetUsersByNane(final String name) ({
return new SQL() {{

SELECT("*");
FROM "users");
if (name !'= null) {
WHERE("name |i ke #{value} || "%");
}

ORDER_BY("id");
}}.toString();
}
}

This example shows multiple parameters using the Sgl Provider annotation:

@Bel ect Provi der (type = User Sql Bui | der. cl ass, nethod = "buil dGet UsensByNane")
Li st <User > get User sByNane(
@rar am("nanme") String name, @Paran("orderByColum") String orderByCol um);

cl ass User Sql Bui | der {

/1 1f not use @aram you should be define sane argunents w th napper nethod
public static String buil dGet User sByNane(
final String nane, final String orderByCol um) {
return new SQL(){{
SELECT("*");
FROM "users");
VWHERE("nane |ike #{nane} || '%");
ORDER _BY(or der ByCol unm) ;
}}.toString();

}

/1 1f use @aram you can define only argunents to be used
public static String buil dGet User sByNane(@ar an(" or der ByCol um") |final String ord
return new SQL(){{
SELECT("*");
FROM "users");
VWHERE("nane |ike #{nane} || '%");
ORDER _BY(or der ByCol umm) ;
}}.toString();

}

}

This example shows usage that share an sgl provider classto all mapper methods using global
configuration(Available since 3.5.6):

Configuration configuration = new Configuration();
configuration. set Def aul t Sql Provi der Type(Tenpl at eFi | ePat hProvi der. cllass); // Specify
/1

©2022, MyBatis.org « ALL RIGHTS RESERVED.

6 Java API 91

/1 Can omit the type/value attribute on sqgl provider annotation
/1 1f omt it, the MyBatis apply the class that specified on defaultSqgl Provi der Type
public interface User Mapper {

@bel ect Provider // Same with @bel ect Provider(Tenpl at eFi | ePat hProvi der . cl ass)
User findUser(int id);

@nsertProvider // Same with @nsertProvider(Tenpl at eFi | ePat hProvi der . cl ass)
voi d createUser (User user);

@Jpdat eProvi der // Same with @Jpdat eProvi der(Tenpl at eFi | ePat hPr ovi der . cl ass)
voi d updat eUser (User user);

@el eteProvider // Same with @el et eProvider(Tenpl at eFi | ePat hProvi der . cl ass)
voi d del eteUser(int id);

}

This example shows usage the default implementation of Pr ovi der Met hodResol ver (available
since MyBatis 3.5.1 or |ater):

@Bel ect Provi der (User Sgl Provi der. cl ass)
Li st <User > get User sByNane(Stri ng nane);

/1 1nplenents the Provider Met hodResol ver on your provider class
cl ass User Sql Provi der inplenents Provider Met hodResol ver {
/1 In default inplementation, it will resolve a nethod that nethod name is matche
public static String getUsersByNane(final String name) ({
return new SQL(){{

SELECT("*");
FROM "users");
if (name !'= null) {
VWHERE("nane |ike #{value} || '"%");
}

ORDER _BY("id");
}}.toString();
}

}

This example shows usage the dat abasel d attribute on the statement annotation(Available since
3.5.5):

@sel ect (val ue = "SELECT SYS GUID() FROM dual ", databaseld = "oracle") // Use this s
@sel ect (val ue = "SELECT uui d_generate_v4()", databaseld = "postgres") // Use this s
@Bel ect ("SELECT RANDOM UUIDX)") // Use this statenent if the Databasel dProvi der not
String generateld();

©2022, MyBatis.org « ALL RIGHTS RESERVED.

7 Statement Builders 92

Statement Builders

7.1 The SQL Builder Class

7.1.1 The Problem

One of the nastiest things a Java developer will ever haveto do is embed SQL in Java code. Usually
thisis done because the SQL has to be dynamically generated - otherwise you could externalize it

in afile or astored proc. Asyou've already seen, MyBatis has a powerful answer for dynamic SQL
generation in its XML mapping features. However, sometimes it becomes necessary to build a SQL
statement string inside of Java code. In that case, MyBatis has one more feature to help you out,
before reducing yourself to the typical mess of plus signs, quotes, newlines, formatting problems and
nested conditional s to deal with extra commas or AND conjunctions. Indeed, dynamically generating
SQL code in Java can be areal nightmare. For example:

String sql = "SELECT P.I1D, P.USERNAME, P.PASSWORD, P.FULL_NAME,
"P. LAST_NAME, P. CREATED ON, P. UPDATED ON " +

" FROM PERSON P, ACCOUNT A " +

"I NNER JO N DEPARTMENT D on D.1D = P. DEPARTMENT ID " +
"I NNER JO N COVPANY C on D.COVPANY ID = C.ID " +
"WHERE (P.1D = A. 1D AND P. FIRST_NAME like ?) " +

"OR (P.LAST_NAME like ?) " +

"GROUP BY P.ID " +

"HAVI NG (P. LAST_NAME like ?) " +

"OR (P.FIRST_NAME like ?) " +

"ORDER BY P.ID, P.FULL_NAME';

7.1.2 The Solution

MyBatis 3 offers a convenient utility class to help with the problem. With the SQL class, you simply
create an instance that lets you call methods against it to build a SQL statement one step at atime. The
example problem above would look like this when rewritten with the SQL class:

©2022, MyBatis.org « ALL RIGHTS RESERVED.

7 Statement Builders 93

private String sel ect PersonSgl () {

return new SQL() {{
SELECT("P. 1D, P.USERNAME, P.PASSWORD, P.FULL_NAME");
SELECT(" P. LAST_NAME, P. CREATED ON, P. UPDATED ON');
FROM " PERSON P") ;
FROM " ACCOUNT A");
| NNER_JO N(" DEPARTMENT D on D. 1D = P. DEPARTMENT_I D');
I NNER_JO N(" COVWPANY C on D.COWANY_ID = C. I D");
VWHERE("P.ID = A ID");
VWHERE(" P. FI RST_NAME | i ke ?");
OR();
VWHERE(" P. LAST_NAME | i ke ?");
GROUP_BY("P.ID");
HAVI NG " P. LAST_NAME |i ke ?");
oR();
HAVI NG " P. FI RST_NAME | i ke ?");
ORDER_BY("P.I1D");
ORDER_BY(" P. FULL_NAME") ;

}}.toString();

}

What is so special about that example? Well, if you look closely, it doesn't have to worry about
accidentally duplicating "AND" keywords, or choosing between "WHERE" and "AND" or none at all.
The SQL classtakes care of understanding where "WHERE" needs to go, where an "AND" should be
used and all of the String concatenation.

7.1.3 The SQL Class
Here are some examples:

©2022, MyBatis.org « ALL RIGHTS RESERVED.

7 Statement Builders 94

/1 Anonynous inner class
public String del etePersonSqgl () {
return new SQL() {{
DELETE_FROM " PERSON') ;
VWHERE("ID = #{id}");
}}.toString();
}

/! Builder / Fluent style
public String insertPersonSgl () {
String sgl = new SQ.()
. I NSERT_I NTQ(" PERSON")
. VALUES("I D, FIRST_NAME", "#{id}, #{firstNane}")
. VALUES(" LAST_NAME", "#{l ast Name}")
.toString();
return sql;

}

/1 Wth conditionals (note the final paranmeters, required for the anonynous inner c
public String sel ect PersonLike(final String id, final String firstName, final Strin
return new SQL() {{
SELECT("P. 1D, P.USERNAME, P.PASSWORD, P.FlI RST_NAME, P.LAST_NAME");

FROM " PERSON P");

if (id!=null) {
VWHERE("P. 1D like #{id}");

}

if (firstName !'= null) {
VWHERE(" P. FI RST_NAME | i ke #{firstNane}");
}

if (lastNane !'= null) {
VWHERE(" P. LAST_NAME | i ke #{l| ast Name}");
}

ORDER_BY(" P. LAST_NAME") ;
}}.toString();
}

public String del etePersonSqgl () {
return new SQL() {{
DELETE_FROM " PERSON') ;
VWHERE("ID = #{id}");
}}.toString();
}

public String insertPersonSgl () {
return new SQL() {{
| NSERT_I NTQ(" PERSON") ;
VALUES(" I D, FIRST_NAME", "#{id}, #{firstName}");
VALUES(" LAST_NAME", "#{| ast Nane}");
}}.toString();

}

public String updatePersonSqgl () {
return new SQL() {{
UPDATE(" PERSON") ;
SET(" FI RST_NAME = #{firstName}");
VWHERE("ID = #{id}");

©2022}, h})}Batt(l)SSEJ[gl I:]%(L)L;RIGHTS RESERVED.

7 Statement Builders

« SELECT(String)
« SELECT(String...)

« SELECT_DI STI NCT(Stri ng)
« SELECT DI STINCT(String...)

« FROM Stri ng)

-« FROMString...)

« JON(String)

« JON(String...)

* INNER_JO N(String)

« INNER_JO N(String...)

« LEFT_QUTER JO N(Stri ng)

« LEFT_QUTER JO N(String...)
« RIGHT_OUTER JO N(Stri ng)

« RIGHT_OQUTER_JO N(String...)

- WHERE(St ri ng)

« WHERE(String...)

OR()

ANKX()

GROUP_BY(Stri ng)
GROUP_BY(String...)

 HAVI NE St ri ng)
- HAVING String. . .)

ORDER_BY(Stri ng)

+ ORDER BY(String...)

©2022,

MyBatis.org -

ALL RIGHTS RESERVED.

95

Starts or appends to a SELECT clause. Can be called
more than once, and parameters will be appended to
the SELECT clause. The parameters are usually a
comma separated list of columns and aliases, but can
be anything acceptable to the driver.

Starts or appends to a SELECT clause, also adds
the DI STI NCT keyword to the generated query. Can
be called more than once, and parameters will be
appended to the SELECT clause. The parameters
are usually a comma separated list of columns and
aliases, but can be anything acceptable to the driver.

Starts or appends to a FROMclause. Can be called
more than once, and parameters will be appended
to the FROMclause. Parameters are usually a table
name and an alias, or anything acceptable to the
driver.

Adds a new JO N clause of the appropriate type,
depending on the method called. The parameter can
include a standard join consisting of the columns and
the conditions to join on.

Appends a new WHERE clause condition,
concatenated by AND. Can be called multiple times,
which causes it to concatenate the new conditions
each time with AND. Use OR() to split with an OR.

Splits the current WHERE clause conditions with an
OR Can be called more than once, but calling more
than once in a row will generate erratic SQL.

Splits the current WHERE clause conditions with an
AND. Can be called more than once, but calling more
than once in a row will generate erratic SQL. Because
VWHERE and HAVI NGboth automatically concatenate
with AND, this is a very uncommon method to use and
is only really included for completeness.

Appends a new GROUP BY clause elements,
concatenated by a comma. Can be called multiple
times, which causes it to concatenate the new
conditions each time with a comma.

Appends a new HAVI NG clause condition,
concatenated by AND. Can be called multiple times,
which causes it to concatenate the new conditions
each time with AND. Use OR() to split with an OR.

Appends a new ORDER BY clause elements,
concatenated by a comma. Can be called multiple
times, which causes it to concatenate the new
conditions each time with a comma.

7 Statement Builders

« LIMT(String)

« LIM T(int)

« OFFSET(String)

* OFFSET(I ong)

» OFFSET_ROWS(St ri ng)
« OFFSET_ROW5(| ong)

« FETCH_FI RST_ROWS_ONLY(Stri ng)
« FETCH_FI RST_ROWS_ONLY(i nt)

DELETE_FROM St ri ng)

I NSERT _| NTQ(St ri ng)

« SET(String)
« SET(String...)

UPDATE(St ri ng)

VALUES(St ri ng,

String)

| NTO COLUMNS(String. . .)

| NTO VALUES(String. . .)

ADD_ROW()

96

Appends a LI M T clause. This method valid
when use together with SELECT(), UPDATE()
and DELETE(). And this method is designed to
use together with OFFSET() when use SELECT().
(Available since 3.5.2)

Appends a OFFSET clause. This method valid when
use together with SELECT(). And this method is
designed to use together with LIMIT(). (Available since
3.5.2)

Appends a OFFSET n ROWS clause. This
method valid when use together with SELECT().
And this method is designed to use together with
FETCH_FIRST_ROWS_ONLY(). (Available since
3.5.2)

Appends a FETCH FI RST n ROAS ONLY clause.
This method valid when use together with SELECT().
And this method is designed to use together with
OFFSET_ROWS(). (Available since 3.5.2)

Starts a delete statement and specifies the table to
delete from. Generally this should be followed by a
WHERE statement!

Starts an insert statement and specifies the table
to insert into. This should be followed by one

or more VALUES() or INTO_COLUMNS() and
INTO_VALUES() calls.

Appends to the "set" list for an update statement.

Starts an update statement and specifies the table to
update. This should be followed by one or more SET()
calls, and usually a WHERE() call.

Appends to an insert statement. The first parameter
is the column(s) to insert, the second parameter is the
value(s).

Appends columns phrase to an insert statement. This
should be call INTO_VALUES() with together.

Appends values phrase to an insert statement. This
should be call INTO_COLUMNS() with together.

Add new row for bulk insert. (Available since 3.5.2)

NOTE It isimportant to note that SQL classwritesLI M T, OFFSET, OFFSET n ROWS and FETCH

FI RST n ROAB ONLY clausesinto the generated statement asis. In other words, the library does not
attempt to normalize those values for databases that don't support these clauses directly. Therefore, it
is very important for users to understand whether or not the target database supports these clauses. If
the target database does not support these clauses, then it islikely that using this support will create
SQL that has runtime errors.

Since version 3.4.2, you can use variable-length arguments as follows:

©2022,

MyBatis.org -

ALL RIGHTS RESERVED.

7 Statement Builders

public String sel ectPersonSgl () {

return new SQL()
. SELECT("P.1D", "A USERNAME"', "A. PASSWORD', "P.FULL_NAME",

. FROM "PERSON P", "ACCOUNT A")

.WHERE("P. 1D = A ID', "P.FULL_NAME |ike #{name}")
. ORDER_BY("P.1D", "P.FULL_NAVME")
.toString();

}

public String insertPersonSgl () {
return new SQL()
. I NSERT_I NTQ(" PERSON")
. I NTO_COLUMNS("I D', "FULL_NAME")
. I NTO_VALUES("#{id}", "#{full Name}")
.toString();
}

public String updatePersonSqgl () {
return new SQL()
. UPDATE(" PERSON")

. I NNER_JO N("DEPARTMENT D on D.ID = P. DEPARTMENT_I D', " COVPANY

"D. [

97

DEPARTMENT_NAME" ,

C on D. COVPANY_I

. SET("FULL_NAME = #{full Nane}", "DATE OF BIRTH = #{dateO'Birth}")
.MHERE("ID = #{id}")
.toString();
}
Since version 3.5.2, you can create insert statement for bulk insert as follow:
public String insertPersonsSqgl () {
/1 1 NSERT | NTO PERSON (I D, FULL_NANE)
/1 VALUES (#{nmai nPerson.id}, #{mainPerson.fullNane}) , (#{subPerson.id}, #{su

return new SQL()
. I NSERT_I NTQ(" PERSON")
. I NTO_COLUMNS("I D", "FULL_NAME")
. I NTO_VALUES(" #{ mai nPerson.id}", "#{mai nPerson. full Name}")
. ADD_ROW()
. I NTO VALUES("#{subPerson.id}", "#{subPerson.full Nane}")
.toString();

Since version 3.5.2, you can create select statement for limiting search result rows clause as follow:

©2022, MyBatis.org « ALL RIGHTS RESERVED.

7 Statement Builders 98

public String sel ect PersonsWthOfsetLimtSql () {
/1 SELECT id, name FROM PERSON
/1 LIMT #{limt} OFFSET #{of fset}
return new SQL()
. SELECT("id", "nane")
. FROM " PERSON")
LIMT("#{limt}")
. OFFSET("#{of fset}")
.toString();

}

public String sel ect PersonsWthFetchFirstSqgl () {
/1 SELECT id, name FROM PERSON
/1 OFFSET #{offset} ROAS FETCH FIRST #{linmt} ROA5 ONLY
return new SQL()
. SELECT("id", "nane")
. FROM " PERSON")
. OFFSET_ROWS5("#{ of fset}")
. FETCH FI RST_ROWAS_ONLY("#{limt}")
.toString();

7.1.4 SqlBuilder and SelectBuilder (DEPRECATED)

Before version 3.2 we took a bit of a different approach, by utilizing a ThreadlL ocal variable to mask
some of the language limitations that make Java DSLs a bit cumbersome. However, this approach is
now deprecated, as modern frameworks have warmed people to the idea of using builder-type patterns
and anonymous inner classes for such things. Therefore the SelectBuilder and SqlBuilder classes have
been deprecated.

The following methods apply to only the deprecated SglBuilder and SelectBuilder classes.

BEQ N() / RESET() These methods clear the ThreadLocal state of the
SelectBuilder class, and prepare it for a new statement
to be built. BEG N() reads best when starting a new
statement. RESET() reads best when clearing a
statement in the middle of execution for some reason
(perhaps if the logic demands a completely different
statement under some conditions).

SQL() This returns the generated SQL() and resets
the Sel ect Bui | der state (as if BEG N() or
RESET() were called). Thus, this method can only be
called ONCE!

The SelectBuilder and SglBuilder classes are not magical, but it's important to know how they work.
SelectBuilder and SglBuilder use a combination of Static Imports and a ThreadL ocal variable to
enable a clean syntax that can be easily interlaced with conditionals. To use them, you statically
import the methods from the classes like this (one or the other, not both):

©2022, MyBatis.org « ALL RIGHTS RESERVED.

7 Statement Builders

‘i nport static org.apache.ibatis.jdbc. Sel ectBuil der.*;

‘i nport static org.apache.ibatis.jdbc. Sql Buil der. *;

This allows us to create methods like these;

/* DEPRECATED */
public String selectBlogsSqgl () {
BEGA N(); // Cears ThreadLocal variable
SELECT("*"):
FROM "BLOG') ;
return SQ.();
}

/ * DEPRECATED */
private String sel ectPersonSgl () {
BEG N(); // Cears ThreadLocal variable
SELECT("P. 1D, P.USERNAME, P.PASSWORD, P.FULL_NAME");
SELECT(" P. LAST_NAME, P. CREATED ON, P. UPDATED ON');
FROM " PERSON P");
FROM " ACCOUNT A");
| NNER_JO N(" DEPARTMENT D on D. 1D = P. DEPARTMENT_I D');
I NNER_JO N(" COVWPANY C on D.COVWPANY_ID = C. I D");
WHERE("P.ID = A ID");
VWHERE(" P. FI RST_NAME i ke ?");
oR();
VWHERE(" P. LAST_NAME i ke ?");
GROUP_BY("P.ID");
HAVI NG(" P. LAST_NAME |i ke ?");
OR();
HAVI NG(" P. FI RST_NAME |i ke ?");
ORDER _BY("P.ID");
ORDER_BY(" P. FULL_NAME") ;
return SQ.();

©2022, MyBatis.org « ALL RIGHTS RESERVED.

99

8 Logging 100

Logging

8.1 Logging

MyBatis provides logging information through the use of an internal log factory. The internal log
factory will delegate logging information to one of the following log implementations:

 SLFA)

» Apache Commons Logging

* Log4j 2

» Log4j (deprecated since 3.5.9)

» JDK logging
The logging solution chosen is based on runtime introspection by the internal MyBatis log factory.
The MyBatis log factory will use the first logging implementation it finds (implementations are

searched in the above order). If MyBatis finds none of the above implementations, then logging will
be disabled.

Many environments ship Commons Logging as a part of the application server classpath (good
examples include Tomcat and WebSphere). It isimportant to know that in such environments,
MyBatis will use Commons Logging as the logging implementation. In an environment like
WebSphere this will mean that your L og4J configuration will be ignored because WebSphere supplies
its own proprietary implementation of Commons Logging. This can be very frustrating because it will
appear that MyBatisisignoring your Log4J configuration (in fact, MyBatis isignoring your Log4J
configuration because MyBatis will use Commons Logging in such environments). If your application
isrunning in an environment where Commons Logging is included in the classpath but you would
rather use one of the other logging implementations you can select a different logging implementation
by adding a setting in mybatis-config.xml file as follows:

<confi guration>
<settings>

<setting name="Ilogl npl" val ue="LOxJ"/>

</settings>
</ configuration>

Valid values are SLF4J, LOGA4J, LOGA4J2, IDK_LOGGING, COMMONS LOGGING,
STDOUT_LOGGING, NO_LOGGING or afull qualified class name that implements
org. apache. i batis. | oggi ng. Log and gets an string as a constructor parameter.

Y ou can also select the implementation by calling one of the following methods:

org. apache. i batis. | oggi ng. LogFact ory. useSl f 4] Loggi ng() ;
org. apache. i batis. | oggi ng. LogFact ory. useLog4JLoggi ng();
org. apache. i batis. | oggi ng. LogFact ory. useLog4J2Loggi ng() ;
org. apache. i batis. | oggi ng. LogFact ory. useJdkLoggi ng();
org. apache. i batis. | oggi ng. LogFact ory. useCommonsLoggi ng() ;
org. apache. i batis. | oggi ng. LogFact ory. useSt dQut Loggi ng() ;

©2022, MyBatis.org « ALL RIGHTS RESERVED.

8 Logging lOl

If you choose to call one of these methods, you should do so before calling any other MyBatis
method. Also, these methods will only switch to the requested log implementation if that
implementation is available on the runtime classpath. For example, if you try to select Log4J2 logging
and Log4J2 is not available at runtime, then MyBatis will ignore the request to use Log4J2 and will
useit's normal agorithm for discovering logging implementations.

The specifics of SLF4J, Apache Commons Logging, Apache Log4J and the JDK Logging APl are
beyond the scope of this document. However the example configuration below should get you started.
If you would like to know more about these frameworks, you can get more information from the
following locations:

« SLF4J

» Apache Commons Logging
» Apache Log4j 1.x and 2.x

» JDK Logging API

8.1.1 Logging Configuration

To see MyBatis logging statements you may enable logging on a package, a mapper fully qualified
class name, a namespace o afully qualified statement name.

Again, how you do this is dependent on the logging implementation in use. We'll show how to do it
with SLF4J(L ogback). Configuring the logging servicesis simply amatter of including one or more
extra configuration files (e.g. | ogback. xm) and sometimes anew JAR file. The following example
configuration will configure full logging services using SL F4J(L ogback) as a provider. There are 2

steps.

8.1.1.1 Step 1: Add the SLF4J + Logback JAR files

Because we are using SLF4J(L ogback), we will need to ensure its JAR file is available to our
application. To use SLF4J(Logback), you need to add the JAR file to your application classpath.

For web or enterprise applications you can add the | ogback- cl assi c.j ar , 1 ogback-core.jar
andsl f 4j - api . j ar toyour VEB- | NF/ | i b directory, or for a standalone application you can simply
add it to the VM - cl asspat h startup parameter.

If you use the maven, you can download jar files by adding following settings on your pom xmi .

<dependency>
<gr oupl d>ch. qos. | ogback</ gr oupl d>
<artifactld>l ogback-classic</artifactld>
<versi on>1. x. x</ ver si on>

</ dependency>

8.1.1.2 Step 2: Configure Logback
Configuring Logback is simple. Suppose you want to enable the log for this mapper:

©2022, MyBatis.org « ALL RIGHTS RESERVED.

http://www.slf4j.org/
http://commons.apache.org/logging
http://logging.apache.org/log4j/
https://docs.oracle.com/javase/8/docs/technotes/guides/logging/overview.html

8 Logging

102

package org. nybatis. exanpl e;

public interface Bl ogMapper {
@el ect ("SELECT * FROM bl og WHERE id = #{id}")
Bl og sel ectBl og(int id);

}

Create afile caled | ogback. xm as shown below and placeit in your classpath:

<?xm version="1.0" encodi ng="UTF-8"?>
<! DOCTYPE confi gurati on>
<confi guration>

<encoder >
<pattern>%l evel [% hread] - %sg%m</pattern>

</ encoder >

</ appender >

<l ogger name="org. nybatis. exanpl e. Bl ogVapper " >
<l evel value="trace"/>

</l ogger >

<root |evel="error">
<appender-ref ref="stdout"/>

</root >

</ configuration>

<appender name="stdout" class="ch. qos. | ogback. core. Consol eAppende

Np

_‘
\%

The above file will cause SLF4J(Logback) to report detailed logging for

org. mybatis. exanpl e. Bl ogMapper and just errors for the rest of the classes of your application.

If you want to tune the logging at afiner level you can turn logging on for specific statements instead
of the whole mapper file. The following line will enable logging just for the sel ect Bl og statement:

<l ogger name="org. nybati s. exanpl e. Bl ogVapper . sel ect Bl og" >
<l evel value="trace"/>
</l ogger >

By the contrary you may want want to enable logging for a group of mappers. In that case you should

add as alogger the root package where your mappers reside:

<l ogger name="org. nybatis. exanpl e">
<l evel value="trace"/>
</l ogger >

There are queries that can return huge result sets. In that cases you may want to see the SQL statement
but not the results. For that purpose SQL statements are logged at the DEBUG level (FINE in JDK

©2022, MyBatis.org « ALL RIGHTS RESERVED.

8 Logging 103

logging) and results at the TRACE level (FINER in JDK logging), so in case you want to see the
statement but not the result, set the level to DEBUG.

<l ogger nane="org. nybatis. exanpl e">
<l evel val ue="debug"/>
</ | ogger >

But what about if you are not using mapper interfaces but mapper XML files like this one?

<?xm version="1.0" encodi ng="UTF-8" ?>
<! DOCTYPE mapper
PUBLIC "-//nybatis.org//DID Mapper 3.0//EN'
"http://nybatis.org/dtd/ nybatis-3-mapper.dtd">
<mapper namespace="org. nmybati s. exanpl e. Bl ogvapper " >
<sel ect id="sel ectBl og" resultType="Bl og">
select * fromBlog where id = #{id}
</ sel ect >
</ mapper >

In that case you can enable logging for the whole XML file by adding alogger for the namespace as
shown below:

<l ogger name="org. mybati s. exanpl e. Bl ogvapper " >
<l evel value="trace"/>
</ I ogger >

Or for an specific statement:

<l ogger name="org. mybati s. exanpl e. Bl ogvapper. sel ect Bl og" >
<l evel value="trace"/>
</ | ogger >

Y es, as you may have noticed, there is no difference in configuring logging for mapper interfaces or
for XML mapper files.

NOTE If you are using SLF4J or Log4j 2 MyBatiswill call it using the marker MYBATI S.

The remaining configuration inthe | ogback. xm fileis used to configure the appenders, which is
beyond the scope of this document. However, you can find more information at the Logback website.
Or, you could ssimply experiment with it to see what effects the different configuration options have.

8.1.1.3 Configuration example for Log4j 2
pom xn

©2022, MyBatis.org « ALL RIGHTS RESERVED.

https://logback.qos.ch/

8 Logging 104

<dependency>
<gr oupl d>or g. apache. | oggi ng. | og4j </ gr oupl d>
<artifactld>l og4j-core</artifactld>
<ver si on>2. x. x</ ver si on>

</ dependency>

| 0g4j 2. xn

<?xm version="1.0" encodi ng="UTF-8"?>
<Configuration xm ns="http://1oggi ng. apache. org/l og4j/2.0/config">

<Appender s>
<Consol e name="stdout" target="SYSTEM OUT" >
<PatternLayout pattern="%level [%] - %sg%W"/>
</ Consol e>
</ Appender s>

<Logger s>
<Logger name="org. nybatis. exanpl e. Bl oghapper" | evel ="trace"/>
<Root |evel ="error" >
<Appender Ref ref="stdout"/>
</ Root >
</ Logger s>

</ Configuration>

8.1.1.4 Configuration example for Log4j
pom xm

<dependency>
<gr oupl d>l og4j </ gr oupl d>
<artifactld>log4j</artifactld>
<version>1. 2. 17</ver si on>

</ dependency>

| og4j . properties

©2022, MyBatis.org « ALL RIGHTS RESERVED.

8 Logging 105

| og4j . r oot Logger =ERROR, st dout
| og4j .1 ogger.org. nybatis. exanpl e. Bl ogMapper =TRACE
| og4j . appender . st dout =or g. apache. | og4j . Consol eAppender

| og4j . appender . st dout . | ayout =or g. apache. | og4j . Pat t er nLayout
| og4j . appender . st dout . | ayout . ConversionPattern=%p [%] - %PHn

8.1.1.5 Configuration example for JDK logging
| oggi ng. properties

handl er s=j ava. util .| oggi ng. Consol eHandl er
. | evel =SEVERE

org. nybatis. exanpl e. Bl ogMapper =FI NER
java. util.logging. Consol eHandl er. | evel =ALL

java.util .l oggi ng. Consol eHandl er.formatter=java. util .l oggi ng. Si npl eFormatter
java.util .l ogging. SinpleFormatter.format=%4$tT. %4$tL %$s ¥BSs - %B$sYBSs%n

©2022, MyBatis.org « ALL RIGHTS RESERVED.

	Table of Contents
	Introduction
	Getting Started
	Configuration XML
	Mapper XML Files
	Dynamic SQL
	Java API
	Statement Builders
	Logging

