Memphis
User Manual

This document describes how to install and use the precompiler for Memphis, a C/C++
extension for compiler writers.

1 INSTALLATION 2

1 Installation

For Unix systems Memphis is distributed as a compressed tar file memphis-1.9.tar.gz .
To unpack this file type

gunzip memphis-1.9.tar.gz
tar -xvf memphis-1.9.tar

This creates a directory memphis-1.9 with the following subdirectories

memphis The C code of the Memphis precompiler

mrts Contains a simple module to be linked with Memphis programs
examples Some small examples
doc The documentation

Go to directory memphis and type
build

This compiles the Memphis precompiler.

Go to directory mrts and type
build

This compiles the file mrts.cpp that must be linked to a Memphis program.

To test your installation you may go to directory examples/trees and type
build

This translates and executes a simple Memphis program.

The program should print the result
Sum of ExampleTree is 33

The next section discusses how to process this example.

2 Processing a Simple Program

The directory examples/trees contains a file prog.m as depicted in Fig. 1. This file
provides a domain declaration to introduce a data type Tree and a function that uses a
match statemenent to process Tree values (see the Memphis C/C++, A Language for
Compiler Writers for details).

Here is a shell script (file build) to compile this file and to execute the resulting program.

2 PROCESSING A SIMPLE PROGRAM

// Define a data type Tree.
// A Tree is either

// a node with an int field val and two subtrees left and right
// denoted node(val, left, right)
// or

// an empty tree
// denoted empty()

domain Tree {

node(int val, Tree left, Tree right)
empty ()

// Define a function ExampleTree that constructs a Tree

//
// node
// |
// +- 11
// |
// +- empty
// |
// +- node
// |
// +- 22
// |
// +- empty
// |
// +- empty
Tree ExampleTree ()
{
return node(11, empty(), node(22, empty(), empty()));
}

// Define a function Sum that computes the sum
// of the values of a all nodes of a given Tree t

int Sum (Tree t)
{
// inspect the structure of t
match t {
rule node(v, 1, r)
// if t has the form node(v, 1, r)
// the result is obtained by adding v to the
// recursively computed sums of 1 and r
return v + Sum(1l) + Sum(r);

rule empty()

// if t is the empty tree
// the result is 0

return 0;

}

// The main function

extern "C" void printf(...);
main ()

{

printf ("Sum of ExampleTree is %d\n", Sum(ExampleTree()));
}

Fig. 1. A Simple Program (prog.m)

3 MULTIPLE FILE PROGRAMS 4

MEMPHIS=../../memphis/memphis
MRTS=../../mrts/mrts.o
CPP=g++

$MEMPHIS prog.m

$CPP -c prog.cpp

$CPP -0 prog prog.o $MRTS
./prog

The first threee lines define the location of the Memphis precompiler, the path of the
Memphis runtime system, and the C++ compiler.

The next lines invoke the Memphis precompiler, the C++ compiler, and then the re-
sulting program.

The command
$MEMPHIS prog.m

invokes the Memphis precompiler with the source file prog.m. Memphis program files
must have the extension “.m”. The command creates target file prog. cpp.

The precompiler analyses domain declarations and match statements and translates
them into C++ code. Other material (i.e. ordinary C/C++ code) is passed to the target
file just as it is.

The command
$CPP -c prog.cpp

invokes the C++ compiler to translate the generated file prog.cpp. This results in an
object file prog.o.

The command
$CPP -o prog prog.o $MRTS

links the object file prog.o and the Memphis runtime system mrts.o. The result is an
executable program prog.

The Memphis runtime system merely provides an error function that is called when a
match statement fails.

The command
./prog

finally invokes the executable program.

3 MULTIPLE FILE PROGRAMS

// Define a data type Tree.
domain Tree {

node(int val, Tree left, Tree right)
empty ()

Fig. 2. Tree Definition (treedef .m)

// Use the Tree definition
with treedef;

// Define a function Sum that computes the sum
// of the values of a all nodes of a given Tree t

int Sum (Tree t)

{
match t {
rule node(v, 1, r) :
return v + Sum(1l) + Sum(r);
rule empty() :
return O;
}
}

// The main function
extern "C" void printf(...);
main ()
{
Tree ExampleTree = node(11, empty(), node(22, empty(), empty()));

printf ("Sum of ExampleTree is %d\n", Sum(ExampleTree));
¥

Fig. 3. Tree Application (treeuse.m)

3 MULTIPLE FILE PROGRAMS 6

3 Multiple File Programs

A Memphis program may also be composed from several files. Some files may provide
domain declarations that are then used in several other files.

For example, we can split the program discussed in the previous section (Fig. 1) into
two files:

The file treedef.m (Fig. 2) introduces a domain type Tree. Separated in this way, the
Tree defiinition could be used at several places.

The file treeuse.m (Fig. 3) applies the definition. It refers to it using a with clause
with treedef;

that makes the data type visible for this file.

These files are contained in directory examples/multi. Here is a script (file build) to
process them:

MEMPHIS=../../memphis/memphis
MRTS=../../mrts/mrts.o
CPP=g++

$MEMPHIS -h treedef.m

$MEMPHIS treedef.m
$MEMPHIS treeuse.m

$CPP -c treedef.cpp
$CPP -c treeuse.cpp

$CPP -0 walker treedef.o treeuse.o $MRTS

./walker

If a file contains domain declarations that should be available to other files then this
file must be processed twice by the Memphis precompiler. If the precompiler is invoked
with the “~h” option it only processes domain declarations and generates interface infor-
mation (this is used later when files are processed that refer the domain declarations).
Then the precompiler is invoked to produce a C++ file as described above in the previous
section.

The command

$MEMPHIS -h treedef.m

3 MULTIPLE FILE PROGRAMS 7

invokes the Memphis precompiler to generate interface information for the domain dec-
larations in file treedef .m.

This results into three files:

treedef.sig contains the signatures of the domain declarations (i.e. an
abstract representation) that is read when another Memphis

file refers treedef .m.
treedef.h contains C++ headers that are included into C++ code that

is generated for those files that refer treedef .m.
treedef.f is used like treedef.h but contains only forward declara-

tions that allow mutually recursive domains in the generated
C++ code.
The command

$MEMPHIS treedef.m

generates the C'++ implementation of treedef.m and results in a file treedef . cpp.

The command
$MEMPHIS treeuse.m

generates the C++ implementation of treeuse.m and results in a file treeuse. cpp.

The file treeuse.m contains a clause
with treedef;

Hence the file treedef.sig must be available. The generated C++ code contains
include statements for treedef.h and treedef.f.

The commands

$CPP -c treedef.cpp
$CPP -c treeuse.cpp

compile the C++ files treedef . cpp and treeuse. cpp resulting in object files treedef .o
and treeuse.o.

When compiling treeuse.cpp, treedef.h and treedef.f must be available.

The command
$CPP -0 walker treedef.o treeuse.o $MRTS

links the object files treedef.o and treeuse.o and the Memphis runtime system. The
result is an executable program walker.

The command

./walker

4 INTEROPERABILITY WITH CLASSICAL C 8

invokes the executable program.

In Memphis, domain declarations may be mutually recursive. Similarly, Memphis files
may refer each other in a cyclic way.

To process such a program first precompile the files that appear in with clauses, where
you use the “~h” option to generate interface information.

Then precompile all Memphis files to generate C++ code.

Note that the interface information must be regenerated when a domain declaration is
changed.

4 Interoperability with Classical C

Memphis has been designed such that it can be used by C programmers who are not
familiar with C++. It can be understood as a language extending C' by domain decla-
rations and match statements.

However, domain types are mapped on C++ classes, and hence a C++ compiler is
required to compile the files generated by Memphis. Because C'is a subset of C++, a
programmer can write Memphis code without using C++ specific features.

A notable exception to this is that C++ uses so-called name mangling to encode type
information into the names of functions. This has to be suppressed if one wants to call
a (' function from Memphis code. A way to do this is to declare a C function as extern
"C". For example, in our introductory example (Fig. 1) we used the classical C style
for output. This reqired a declaration

extern "C" void printf(...);

Just as classical C functions can be called from Memphis, Memphis terms can also be
constructed in classical C code, i.e. code that needs to be processed by a classical C
compiler. This is made possible because the Memphis precompiler declares the generated
functions as extern "C".

Hence one can construct Memphis trees inside the semantic actions of Yacc code, al-
though this code will be compiled by a C' compiler without precompilation with Memphis.

See the example in directory example/inter and the discussion in the Memphis C/C++,
A Language for Compiler Writers
how to write an interpreter using Lez, Yacc, and Memphis.

5 Interoperability with Gentle

Memphis code can also process terms that are generated by code which is written in the
Gentle compiler description language.

5 INTEROPERABILITY WITH GENTLE 9

Like Memphis, Gentle supports domains types and pattern matching. Unlike Memphis,
Gentle provides a high level of abstraction to express language recognition, transforma-
tion, and code generation in a uniform way.

Combining Gentle and Memphis allows one to use a specialized and productive com-
piler description language for the translation tasks of an application, and also to use
C/C++ programming, e.g. to implement the user interface. Memphis enables seamless
integration of Gentle and C/C++.

Because Gentle is able to capture most errors by analyzing the specification it drastically
reduces debbugging efforts. Its uniform framework provides a strong guidance when
designing a language translator. Gentle offers capabilities not present in Memphis,
such as strongly typed grammar annotation for mapping concrete to abstract syntax,
smart traversal of trees (eliminating the need to write “trivial” rules), and dynamic
programming for optimal code selection.

Just as a command
memphis -h treedef.m

makes the types defined in the Memphis file treedef .m available to other Memphis files,
a command

gentle -h treedef.g

makes the types defined in the Gentle file treedef . g available to Memphis programs.

See the example in directory examples/polish how to write a translator in Gentle and
add a function in Memphis.

See Also

Memphis C/C++, A Language for Compiler Writers
Memphis Language Reference Manual
memphis.compilertools.net

