
Memphis

Language Reference Manual

This document specifies Memphis, an extension of C/C++ [1, 2], that supports the
definition and processing of symbolic data such as abstract syntax trees in compilers.

Memphis provides a new kind of type declarations to describe such data via recursive
definitions in a grammatical style. It also introduces a new statement to process such
structures via rules that are selected by tree pattern matching. These concepts are
known from functional languages [3] and modern compiler construction tools [4].

1

1 INTRODUCTION 2

1 Introduction

Memphis covers C/C++ and adds domain definitions (extending the syntactic category
declaration) and match statements (extending the syntactic category statement).

2 Domain Definitions

domain-definition:
domain identifier { variant-declaration-list }

variant-declaration-list:
variant-declaration
variant-declaration variant-declaration-list

variant-declaration:
identifier (argument-specification-listopt)

argument-specification-list:
argument-specification
argument-specification , argument-specification-list

argument-specification:
identifier identifier

A domain definition of the form
domain Dom {

V ariant1
...
V ariantn

}
introduces a data type Dom, called a domain type, that has n variants.

For example,

domain Statement {
assignmentStatement (Expression target, Expression source)
whileStatement (Expression condition, Statement body)

}

declares a domain type Statement with two variants. 2

A variant declaration of the form
Kind (Type1 Name1 , ... , Typek Namek) ;

introduces a data type Kind_subtype, called a variant type.

A value of this type is a pointer to a structure tagged as Kind. This structure has k
fields, where Typei is the type and Namei is the name of the ith field.

For example,

2 DOMAIN DEFINITIONS 3

whileStatement (Expression condition, Statement body)

introduces a variant type whileStatement_subtype whose values are point-
ers to a structure that is tagged as whileStatement and has a field condition
of type Expression and a field body of type Statement. 2

Domain declaration may be mutually recursive and may be given in any order (there
are no forward declarations).

Values of a variant type are also values of the corresponding domain type. Where an
expression of the corresponding domain type is valid, an expression of a variant type is
also valid.

For example, with the declarations

Statement st;
assignmentStatement_subtype asg;

the assignment

st = asg;

is valid. An assignment

asg = st;

is not valid (st could hold a whileStatement_subtype value). 2

A value of a variant type introduced by
Kind (Type1 Name1 , ... , Typek Namek) ;

is constructed by an expression of the form
Kind(E1, ... , Ek)

where E1 , ... , Ek are expressions of types Type1, ... , Typek.

Its value is the pointer to a newly created structure that is tagged as Kind and has fields
v1 , ... , vk, where v1 , ... , vk are the values obtained by evaluating the expressions
E1 , ... , Ek.

For example, let a and b be variables of type Expression, then

assignmentStatement(a, b)

constructs a value of the variant type assignmentStatement_subtype (that
is also a value of the domain type Statement). Its fields are set to the values
of a and b. 2

3 MATCH STATEMENTS 4

If x is an expression of a variant type, then a field f of the structure to which x points
may be designated by x -> f . This designator may be used to access and modify the
value of the field.

For example, if asg is a variable of type assignmentStatement_subtype
then

expr = asg->source;

assigns the value of the source field to expr and

asg->source = expr

sets the source field to the value of expr. 2

3 Match Statements

match-statement:
match identifier-list { rule-list }

identifier-list:
identifier , identifier-list
identifier

rule-list:
rule rule-list
rule

rule:
rule pattern-list : statement-list

pattern-list:
pattern
pattern , pattern-list

pattern:
identifier
identifier (pattern-listopt) identifieropt

A match statement of the form
match e1 , ... , en {

rule1

...
rulek

}
is elaborated as follows: First, the expressions e1, ... , en are evaluated, yielding values
v1, ... , vn. Then the rules rule1, ... , rulen are elaborated in the given order until one
succeeds. It is a checked run time error when all rules fail.

3 MATCH STATEMENTS 5

A rule has the form
rule p1 , ... , pn :

S1

...
Sm

It is elaborated as follows. First, the values v1, ... , vn are matched against the patterns
p1, ... , pn. If this fails, the rule fails. Otherwise the statements S1, ... , Sn are
elaborated and the rule succeeds.

If an expression ei is of type Ti, then a pattern Pi is said to appear on a position of type
Ti.

For example, consider a function CheckLists that checks to values actual
and formal of a domain type List.

CheckLists(List actual, List formal)
{

match actual, formal {
rule list(actHd, actTl), list(formHd, formTl) :

CheckMembers(actHd, formHd);
CheckLists(actTl, formTl)

rule empty(), empty():
;

rule empty(), list(formHd, formTl) :
Error("actual list too short");

rule list(actHd, actTl), empty() :
Error("formal list too short");

}
}

If both lists contain at least one member (actHd and formHd), the first rule
is selected that checks these members and recursively processes the tails of
the lists.

If both lists are empty, the second rule is selected and no further action is
being performed.

If one is empty and the other is not, the third or the fourth rule emits a
corresponding error message. 2

A value v is matched against a pattern p as follows.

If the pattern is an identifier id, the the matching always succeeds.

id is implicitly declared as a variable local to the rule. It has the type of the correspond-
ing position and is initialized with the value v.

For example, if the value is
assignmentStatement(s,t)

3 MATCH STATEMENTS 6

and the rule heading is
rule st:

the matching succeeds. st is set to assignmentStatement(s,t). st is a
variable of type Statement that is declared local to the rule. 2

If the pattern has the form
f (p1 ,... ,pn)

then the matching succeeds if v is a value of the form
f (v1 ,... ,vn)

and matching the values v1, ... , vn against the patterns p1, ... , pn succeeds; otherwise
the matching fails.

If the pattern appears on a position with type T then T must be domain type with a
variant of the form

f (T1 I1 , ... , Tn In)
The subpatterns p1, ..., pn appear on positions with T1, ..., Tn.

For example, if the value is
assignmentStatement (s ,t)

and the rule heading is
rule assignmentStatement (left, right) :

then the matching succeeds and left and right are set to s and t, respec-
tively. left and right are variables of type Expression that are declared
local to the rule. 2

Finally, if the pattern has the combined form
f (p1 ,... ,pn)id

then the matching succeeds if v is a value of the form
f (v1 ,... ,vn)

and matching the values v1, ... , vn against the patterns p1, ... , pn succeeds; otherwise
the matching fails.

id is implicitly declared as a variable local to the rule. It has the variant type f_subtype
and is initialized with the value v.

The type constraints of the second form also apply to this form.

For example, if the value is
assignmentStatement (s ,t)

and the rule heading is
rule assignmentStatement (left, right) st :

then the matching succeeds and left and right are set to s and t, respec-
tively. left and right are variables of type Expression that are declared
local to the rule.

st is set to assignmentStatement(s,t).

4 FILE CLAUSES 7

st is a variable of type assignmentStatement_subtype that is declared local
to the rule.

Because st is declared as of a variant type its fields can be accessed as in
st->target. 2

A pattern
f (id1 , ... , idn)

can be abbreviated by
f ()

if id1, ... , idn are not used.

For example, the rule heading
rule assignmentStatement (left, right) st :

can be written in the form
rule assignmentStatement () st :

and st -> target could be used instead of left.

The rules

rule empty(), list(formHd, formTl) :
Error("actual list too short");

rule list(actHd, actTl), empty() :
Error("formal list too short");

can be written as

rule empty(), list() :
Error("actual list too short");

rule list(), empty() :
Error("formal list too short");

since the field names are not used in the rule bodies. 2

4 File Clauses

file-clause:
with identifier ;

If a source file refers to domain declarations of another source file, the referring file must
contain a file-clause of the form

with name ;
where name is the base name of the referred file.

This is equivalent to textually including the domain declarations of the referred file at
the place of the file-clause.

4 FILE CLAUSES 8

For example, assume that a file “ast.m” contains domain declarations
that specify abstract syntax trees. A file “walker.m” that contains match
statements to process these trees must provide a clause

with ast ;

2

References

[1] Brian W. Kernigham, Dennis M. Ritchie:
The C Programming Language, Second Edition,
Prentice Hall (1978)

[2] Ellis Stroustrup:
The C++ Programming Language, Third Edition,
Addison Wesley Longman (1997)

[3] Robert Harper, Robin Milner, Mads Tofte:
The Definition of Standard ML (Version 2),
MIT Press (1989)

[4] Friedrich Wilhelm Schröer:
Gentle,
In Studien der GMD 166,
German National Research Center for Information Technology (1989)

See Also

Memphis C/C++, A Language for Compiler Writers
Memphis User Manual
memphis.compilertools.net

