Memphis C/C++
A Language for Compiler Writers

This document gives an overview on Memphis, a C/C++ extension for compiler writers
and other programmers having to manipulate symbolic data.

Memphis provides a new kind of type declarations to describe such data via recursive
definitions in a grammatical style. It also introduces a new statement to process such
structures via rules that are selected by pattern matching. These concepts are known
from functional languages [1] and modern compiler construction tools [2].

The new concepts are seamlessly integrated with the C/C++ programming language
[3, 4]. One may use the new features without giving up anything of the power and
flexibility of the host language. Memphis is implemented by a precompiler.

The next section introduces domain declarations and match statements. We then show
how the traditional C/C++ concepts apply to the new data types. The last section
provides an example how to write an interpreter with Lez, Yacc, and Memphis.
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1 Domain Declarations and Match Statements

Memphis extends C/C++ with domain declarations and match statements.

Consider the example in Fig. 1. This is a complete Memphis program; it uses a domain
declaration to introduce a new data type Tree, and a match statement to process Tree
values.

A Tree is given by a node that has an integer attribute val and two subtrees left and
right. A Tree may also be the empty tree.

Hege is graphical representation of a Tree that has a val field of 22 and two empty
subtrees:

node

|

+- 22

|

+- empty
|

+- empty

The data type Tree is given by a domain declaration as follows.

domain Tree {
node(int val, Tree left, Tree right)
empty ()

A domain declaration specifies a type by enumerating possible alternatives how to denote
values of that type. According to the above declaration, values of type Tree have two
alternative forms:

node(v, 1, r)
or

empty ()

An alternative specification gives a name for the alternative and lists the types and
names of its fields. The alternative

node(int val, Tree left, Tree right)

from the above declaration defines values of kind node, they have an int field named
val and two Tree fields named left and right.

Because 22 is an integer and empty () stands for the empty tree,

node (22, empty(), empty())
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// Define a data type Tree.

// A Tree is either

// a node with an int field val and two subtrees left and right
// denoted node(val, left, right)

// or

// an empty tree

// denoted empty()

domain Tree {

node(int val, Tree left, Tree right)
empty ()

// Define a function ExampleTree that constructs a Tree

//
// node
// |
// +- 11
// |
// +- empty
// |
// +- node
// |
// +- 22
// |
// +- empty
// |
// +- empty
Tree ExampleTree ()
{
return node(11, empty(), node(22, empty(), empty()));
}

// Define a function Sum that computes the sum
// of the values of a all nodes of a given Tree t

int Sum (Tree t)
{
// inspect the structure of t
match t {
rule node(v, 1, r)
// if t has the form node(v, 1, r)
// the result is obtained by adding v to the
// recursively computed sums of 1 and r
return v + Sum(1l) + Sum(x);

rule empty()

// if t is the empty tree
// the result is 0

return 0;

}

// The main function

extern "C" void printf(...);
main ()

{

printf ("Sum of ExampleTree is %d\n", Sum(ExampleTree()));
}

Fig. 1. An Example Program
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stands for the Tree depicted above.

This notation can be used in an expression. The function ExampleTree returns a slightly
more complex Tree:

Tree ExampleTree ()

{
return node(11, empty(), node(22, empty(), empty()));
}

The value returned may be graphically represented as

node
|
+- 11
|
+- empty
|
+- node
|
+- 22
|
+- empty
|
+- empty

We now define a function Sum that computes the sum of the values of a all nodes of a
given Tree t. This will be done by recursively following the structure of a Tree.

If t has the form
node(v, 1, r)

the result is obtained by adding v to the recursively computed sums of 1 and r.

If £ has the form
empty ()

the result is 0.

For example

Sum( node(22, empty(), empty()) )

is22 + 0 + 0, ie 22.

The body of the function is given as a match statement.
int Sum (Tree t)

{
match t {
rule node(v, 1, r)
return v + Sum(l) + Sum(r);
rule empty()
return O;
}
}

A match statement names an item the structure of which has to be inspected.
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match t {

3

means: inspect the structure of t.

It then lists in braces a number of rules from which one is selected according to the
structure of the value. The rules

rule node(v, 1, r)

return v + Sum(l) + Sum(r);
rule empty()

return O;

cover the two cases.

A rule gives a pattern for a value and a list of statement that are executed when the
given value matches that pattern.

Let t be the tree
node (22, empty(), empty())
and consider the rule

rule node(v, 1, r)
return v + Sum(l) + Sum(r);

Matching the value

node (22, empty(), empty())
against the pattern

node(v, 1, r)

succeeds. It also defines the variables v, 1, and r as 22, empty (), and empty (), respec-
tively. These variables are implicitly declared as local to the rule.

With these values the rule body
return v + Sum(l) + Sum(r);

is executed. It returns the value 22 + 0 + 0, i.e. 22.

The second rule would not have been applicable, since
node (22, empty(), empty())

does not match the pattern
empty ()

Memphis allows nested patterns of arbitrary depth. However, the two rules in our exam-
ple use simple pattern that correspond to the two alternatives of the domain declaration.
This style is very common: The structure of algorithm mirrors the structure of data.
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2 Domains as Classes with Subclasses

In this section we discuss how traditional C/C++ concepts apply to domain types.

As an example we use again the data type Tree as defined in the previous section. Let
us define a function that increments the val fields of a given tree.

In C/C++, if n is a pointer to a structure representing a node, we can write
n->val

to designate its val field. We can use this as the target of an assignment and modify
the field:

n->val = n->val + 1;

The same is possible possible in Memphis. We have to assert that n indeed refers to a
node; if n would refer to the empty variant then there would be no val field. This can
be done by assigning a name to a pattern as in

node(v,1,r) n

If a value matches the pattern node(v,1,r) then n represents this value which is now
known to be of the specific variant.

We may omit arguments and simply write
node() n

to introduce n.

n acts as a variable local to the rule. We may access the fields of n using the notation
n->val.

Here is a function IncrementValFields(t) that adds one to each val field of of each
node node(val, left, right) of a given Tree t.

IncrementValFields(Tree t)
{
match t {
rule node() n :
n->val = n->val + 1;
IncrementValFields (n—->left);
IncrementValFields(n->right) ;
rule empty()

b
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Inside the body of the first rule we are able to access the fields of n using the traditional
“=>” notation. Sometimes we want to write a piece of code using this style, but we don’t
want to include that code into the body of rule. One reason could be that we want to
package this code as a function that could be invoked from different places.

Let us define a function IncrementValFieldOfNode(n) that increments the val field
of its argument by one. This function can only be invoked with node values, hence the
argument type Tree would be to general.

¢

There is also name for the specific type. It is obtained by appending “_subtype” to the
name of the variant. For example, node_subtype is the specific type of node values.

Using this type we can write our function:

IncrementValField0fNode (node_subtype n)
{

n->val = n—->val + 1;

Because n is declared as of the specific type we can use n->val to denote its val field.

The function can only be invoked with an argument for which it is clear that it is an
instance of the specific variant.

This is the case if the actual argument of the function is introduced using a pattern like
node() n
So we can rewrite our function using IncrementValFieldOfNode.

IncrementValFields(Tree t)
{
match t {
rule node() n :
IncrementValFieldOfNode (n) ;
IncrementValFields(n—->left);
IncrementValFields(n->right) ;
rule empty()

b

We can also declare variables of the specific subtype:
node_subtype n;

A variable of a subtype may be used whenever a variable of the corresponding general
type is valid. So we can invoke function Sum that expects a Tree value with this variable:
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Sum(n) ;

The reason is that a value of the node variant is also a value of the Tree type.

The value of an expression of the form
node (v, 1, r)

is actually a value of the specific subtype. It can be assign to a subtype variable as well
as to variable of the domain type.

n = node(11, empty(), node(22, empty(), empty()));

is valid if n is declared as above.

Whereas the style discussed in the preceding section leads to a declarative flavour of
programs, the style discussed here supports an imperative style where you can modify
values by side effects.

Note that the pure declarative style supports tree-like values, whereas the imperative
style can also deal with general graphs. Modifications of fields allow to introduce arbi-
trary connections including cycles.

Experience in many projects has shown that the declarative style leads to more readable
and reliable code and is sufficient for most cases. The imperative style should be used
as the exception, not as the rule.

3 Writing an Interpreter with Lex, Yacc, and Memphis

In this section we apply the new concepts and show how to write an interpreter with
Lex [5], Yacc [6], and Memphis. (See [7] for a more detailed discussion of how to use Lex
and Yacc and how to define and process abstract syntax.)

Our example language provides arithmetic and relational expressions as well as assign-
ment and print statements. To structure programs it features conditional and repetitive
statements and the possibility to group statements to sequences.

Here is a typical program in our example language:

// Greatest Common Divisor
X := 8;
y = 12;
WHILE x != y DO
IF x > y THEN x := x-y
ELSE y := y—=x
FI
0D;
PRINT x
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PAS
#include "y.tab.h"
extern int yylval;
%}
Wh

n=n { return EQ; }
n=n { return NE; }
nen { return LT; }
ne=n { return LE; }
" { return GT; }
"= { return GE; }
ngn { return PLUS; }
nen { return MINUS; }
nxn { return MULT; }
"/ { return DIVIDE; }
" { return RPAREN; }
NG { return LPAREN; }
"=t { return ASSIGN; }
nyn { return SEMICOLON; }
"IF" { return IF; }
"THEN"  { return THEN; }
"ELSE" { return ELSE; }
"FI" { return FI; }
"WHILE" { return WHILE; }
"DO" { return DO; }
"op" { return 0D; }
"PRINT" { return PRINT; }
[0-9]1+ { yylval = atoi(yytext); return NUMBER; }
[a-z] { yylval = yytext[0] - ’a’; return NAME; }
\ {57
\n { nextline(); }
\t {51}
"//".#\n { nextline(); }
{ yyerror("illegal token"); }

Wh
#ifndef yywrap
yywrap() { return 1; }
#endif

Fig. 2. Lex Specification

Our processor for this language will be decomposed into two parts.

The task of the first part (the analizer) is to read the source program and to discover
its structure.

The task of the second part (the tree walker) is to process this structure, thereby eval-
uating expressions and executing statements.

The glue between these parts is an abstract program representation.

The Analizer

The task to structure the program is decomposed into lexical analysis and syntactical
analysis.

Lexical analysis splits the source text into a sequence of tokens, skipping blanks, new-
lines, and comments. For example, the source text

x := // multiply x
x*100 // by hundred

is handled as the sequence of tokens “x”, “:=", “x”, “¥”7 “100".
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[/}

Each token belongs to a token class. There are simple tokens such as “:=”, it belongs
to the class ASSIGN which has only this member. And there are more complex tokens
such 100, it belongs to the class Number which comprises the strings that form decimal
numbers. Simple tokens can be specified simply by the string that represents them.
Complex tokens are defined by a regular expression that covers the strings of the token
class. For example, the regular expression

[0-9]+

specifies nonempty sequences of decimal digits. In case of simple tokens we just need to
know the token class, in case of complex tokens some additional processing is neccessary.
E.g. the strings that matches the regular expression for numbers must be converted to
an integer that holds its numerical value.

The lexical analysis is implemented by a function yylex() that reads a token from the
input stream and returns its name (token class). In addition, it assign the semantic
value (e.g. of numbers) to the global variable yylval.

Such a function can be generated by the tool Lez. Its input is a set of pairs
reqular-expression { action }

The action is performed when the current input matches the regular expression. For
example,

":=" { return ASSIGN; }
defines ASSIGN tokens and
[0-9]+ { yylval = atoi(yytext); return NUMBER; }

specifies how to handle numbers.
Fig. 2 is the input to Lex.

Syntactical analysis imposes a hierarchical structure on the program. This structure is
specified by the rules of a context-free grammar. A syntactical phrase is introduced by
giving one or more alternatives. An alternative specifies how to construct an instance
of the phrase. It list the members that build up the phrase, where such a member is
either a token or the name of a phrase (a nonterminal).

Consider the rule to define statements:

statement:
designator ASSIGN expression
| PRINT expression
| IF expression THEN stmtseq ELSE stmtseq FI
| IF expression THEN stmtseq FI
| WHILE expression DO stmtseq 0D
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%start ROOT

%token EQ
‘Jtoken NE
‘token LT
Jtoken LE
Jtoken GT
Jtoken GE
%token PLUS
Jtoken MINUS
%token MULT
%token DIVIDE
%token RPAREN
%token LPAREN
%token ASSIGN
%token SEMICOLON
Jtoken IF
‘Jtoken THEN
Jtoken ELSE
‘token FI
Jtoken WHILE
‘token DO
‘Jtoken 0D
%token PRINT
%token NUMBER
%token NAME

W

ROOT:
stmtseq { execute($1); }
statement:

designator ASSIGN expression { $$ = assignment($1, $3); }
PRINT expression { $$ = print($2); }

WHILE expression DO stmtseq 0D { $$ = whilestmt($2, $4); }

stmtseq:
stmtseq SEMICOLON statement { $$ = seq($1, $3); }
| statement { $$ = $1; }

H

expression:

expr2 { $$ = $1; }

| expr2 EQ expr2 { $$ = eq($1, $3); }
| expr2 NE expr2 { $$ = ne($1, $3); }
| expr2 LT expr2 { $$ = le($1, $3); }
| expr2 LE expr2 { $$ = le($1, $3); }
| expr2 GT expr2 { $$ = gt($1, $3); }
| expr2 GE expr2 { $$ = gt($1, $3); }

expr2:
expr3 { $$ == $1; }
| expr2 PLUS expr3 { $$ = plus($1, $3); }
| expr2 MINUS expr3 { $$ = minus($1, $3); }

expr3:
exprd { $$ = $1; }
| expr3 MULT expr4 { $$ = mult($1, $3); }
| expr3 DIVIDE expr4 { $$ = divide ($1, $3); }

H

expré:

PLUS expr4 { $$ = $2; }

MINUS expr4 { $$ = neg($2); }

LPAREN expression RPAREN { $$ = $2; }
NUMBER { $$ = number($1); }
designator { $$ = $1; }

designator:
NAME { $$ = name($1); }

Fig. 3. Yacc Specification

IF expression THEN stmtseq ELSE stmtseq FI { $$ = ifstmt($2, $4, $6); }
IF expression THEN stmtseq FI { $$ = ifstmt($2, $4, empty()); }

11
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For example, the first alternative specifies that if D is a designator and if E is an
expression then

D:=F
is a statement.

We use the tool Yacc to generate the syntactical analizer. Its input is a context-free
grammar from which it creates a function yyparse() that parses the source text ac-
cording to that grammar. (yyparse() invokes yylex() to obtain the next token).

With rules like the one given above, yyparse () would only be able to check whether a
given source is consistent with the grammar. As we did with the Lex specification, we
attach semantic actions. They are executed whenever an alternative matches a phrase
of the input and are used to construct an abstract program representation.

The rule for statement becomes:

statement:

designator ASSIGN expression {$$ = assignment($1, $3);}

PRINT expression {$$ = print($2);3}

IF expression THEN stmtseq ELSE stmtseq FI {$$ = ifstmt($2, $4, $6);}
IF expression THEN stmtseq FI {$$ = ifstmt($2, $4, empty());}

WHILE expression DO stmtseq 0D {$$ = whilestmt($2, $4);}

Consider again the first alternative. The semantic action attached to it constructs an
abstract representation of an assignment statement and defines this as the structural
value of the phrase, i.e. it assigns it to the special variable $$. the value is constructed
by applying the function assignment () to the value of the first member (designator),
denoted by $1, and the value of the third member (expression), denoted by $3.

Fig 3 is the input to Yacec.

The Glue

As we have seen with assignment (), the abstract representation, or abstract syntaz,
is constructed by functions that take the representation of constituents and build the
representation of a larger construct.

This results in a tree structure: the functions construct nodes whose childs are subtrees
representing the constituents.

In language processors the abstract syntax plays a central role. It does not only define
the glue between passes, it also determines the design of functions that process the
program: they often inductively follow the structure of the abstract representation.

Hence it is a good idea to provide a clean definition. We classify the nodes into into
node types and list the types of its childs.

For our example language we introduce two node types: Statement and Expression.
An example of nodes of type Statement is assignment that takes two arguments (1hs
and rhs) of type Expression. This is specified by listing
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domain Statement {
assignment (Expression lhs, Expression rhs)
print (Expression x)
ifstmt (Expression cond, Statement thenpart, Statement elsepart)
whilestmt (Expression cond, Statement body)
seq (Statement s1, Statement s2)
empty ()
¥
domain Expression {
eq (Expression x, Expression y)
ne (Expression x, Expression y)
1t (Expression x, Expression y)
le (Expression x, Expression y)
gt (Expression x, Expression y)
ge (Expression x, Expression y)
plus (Expression x, Expression y)
minus (Expression x, Expression y)
mult (Expression x, Expression y)
divide (Expression x, Expression y)
neg (Expression x)
number (int x)
name (int location)

Fig. 4. Abstract Syntax in Memphis

assignment (Expression lhs, Expression rhs)

as an alternative of type Statement.
We use domain declarations for the specification.

For example, Statement is introduced by a declaration of the form

domain Statement {

that lists the Statement alternatives. One of them is
assignment (Expression lhs, Expression rhs)

Fig. 4 gives the complete definition of the abstract syntax.
Note that this definition can be read as a grammar defining the abstract syntax.

The definition not only provides documentation (as it is valuable even if we write the cor-
responding C/C++ data types and the functions manually), it also enables the Memphis
precompiler to generate the implementation automatically.

The Tree Walker

We are now ready to write the tree walker.
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with ast;

extern "C" void printf(...);
extern "C" execute(Statement s);

int var([26];

int evaluate(Expression e)

{

}

match e {
rule eq(x, y) : return evaluate(x) == evaluate(y);
rule ne(x, y) : return evaluate(x) != evaluate(y);
rule 1t(x, y) : return evaluate(x) < evaluate(y);
rule le(x, y) : return evaluate(x) <= evaluate(y);
rule gt(x, y) : return evaluate(x) > evaluate(y);
rule ge(x, y) : return evaluate(x) >= evaluate(y);
rule plus(x, y) : return evaluate(x) + evaluate(y);
rule minus(x, y) : return evaluate(x) - evaluate(y);
rule mult(x, y) : return evaluate(x) * evaluate(y);
rule divide(x, y) : return evaluate(x) / evaluate(y);
rule neg(x) : return - evaluate(x);
rule number (x) :  return x;
rule name(x) : return var([x];

}

execute (Statement s)

{

match s {
rule assignment(name(x), rhs)
var[x] = evaluate(rhs);
rule print(x)
printf("%d\n", evaluate(x));
rule ifstmt(c, s1, s2)
if (evaluate(c)) execute(sl); else execute(s2);
rule whilestmt(c, s)
while(evaluate(c)) execute(s);
rule seq(sl, s2)
execute(sl); execute(s2);
rule empty()

H

Fig. 5. Tree Walker in Memphis

14
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It will consist of two functions (one for each domain of the abstract syntax): evaluate
(Expression e) that evaluates an Expression e and returns its numerical value, and
execute (Statement s) that executes a Statement s.

Such functions are generally written by providing a piece of code for each possible alter-
native of the argument, where this code recursively visits the constituents the argument.

In Memphis we can use the match statement to describe this style of processing.

The evaluate function takes the form

int evaluate(Expression e)

{
match e {

The body of the match statement lists specific rules that handle the Expression e
according to its structure.

One of these rules is
rule plus(x, y) : return evaluate(x) + evaluate(y);

If e has the form plus(x, y) then this rule is applied. It recursively evaluates x and y
and returns the sum of their numerical values.

Fig. 5 describes the tree walker.

Note that this notation is similar to the Yacc style. A syntactic pattern is followed by
an associated action. But here the pattern describes abstract syntax instead of concrete
source text.

Again, the notation is more concise than the corresponding manual implementation.
The Memphis precompiler not only generates the implementation, it also allows to check
statically that constituents are only used in a context where they are indeed fields of
the actual item.
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